Webinar Series

Webinar #2:
Direct-Acting Antivirals Drastically Simplify HCV Diagnosis and Monitoring

Presenter: Dr. Teri Roberts, Senior Scientific Officer, Hepatitis and HIV, FIND (Foundation for Innovative New Diagnostics), Geneva
TAG HCV Webinar Series:
Direct Acting Antivirals Drastically Simplify HCV Diagnostics and Monitoring

Teri Roberts
Scientific Officer for HCV & HIV
teri.roberts@finddx.org
10 December 2015
Introduction to FIND
Why Diagnostics Matter

Diagnosis equals knowledge:
To enable accurate treatment, to target healthcare interventions, and to measure progress.

Enable control, elimination and eradication of diseases.

• The global community needs diagnostics to target interventions, identify outbreaks, and monitor progress towards goals.
Turning Complex Diagnostic Challenges Into Simple Solutions To Transform Lives

Catalyze development
- Dynamic needs definition
- Support program for manufacturers
- Scout technology
- Match-make
- Specimen repository

Guide use & policy
- Clinical trials
- Define evidence needs
- Support WHO development of guidelines

Accelerate access
- National policy
- Rollout plans
- Gaps analysis and solutions
- QA tools and strategies

Shape agenda
- Measure and communicate impact of Dx
- Shape Dx ecosystem to foster willingness to invest
- Lead global discussion on emerging Dx topics
Working With 185 Partners Globally And Forming Coalitions, Always With The End In Mind

Universities and Research Institutes • 44 partners
Industry • 46 partners
Government/multilateral agencies • 35 partners
Advocacy • 2 partners
Clinical Trial Sites • 32 partners
Implementing partners • 26 partners
Significant Progress Achieved In The Last 10 Years

TB

Patients can now get drug susceptibility testing in 2 hours at a district hospital. This used to take up to 120 days and was only available at national reference labs.

Sleeping sickness

The development of a rapid diagnostic test has helped make disease elimination a reality.

Malaria

Joint FIND-WHO efforts to assure the quality of rapid tests have increased the % of quality products in use from 15% to 75%.

HCV: High-priority target product profile for hepatitis C diagnosis in decentralized settings: Combined TPP for HCV diagnostics following consensus process.
Why HCV diagnostics matters
HCV a significant global health problem with an opportunity to intervene

- 185M HCV-infected people worldwide; 130-150M of them are living in resource-limiting settings.
- Up to 85% of HCV-infected will develop chronic disease that leads to severe liver damages (such as liver cirrhosis and HCC).
- HCV causes an estimated 350,000-500,000 deaths/year.
- New highly efficient pan-genotypic, all-oral, IFN-free direct acting antiviral (DAA) drugs eliminate the virus in 12-weeks course.

HCV therapy evolution

- Peginterferon-alpha 2a - 2001
 - PEG-IFN + RBV
 - 24-48 weeks
 - SVR = 38-52%

- PI + Peg-IFN + RBV - 2011
 - 24-48 weeks
 - SVR = 63-75%

- DAA: sofosbuvir, daclatasvir, simeprevir etc - 2014
 - 12 weeks
 - SVR>90%
Lack of simple and affordable HCV diagnostic solutions is a major barrier to large treatment access in LMIC

- World Health Assembly (WHA) resolution in 2014 specifically highlights the importance to improve HCV screening worldwide.
- WHO has HCV elimination as a goal.

India: “We need to tackle our hepatitis problem, both HBV and HCV, and this is the time to do it. India will drive the treatment availability like it did for HIV but we need to make diagnosis available on a larger scale to identify the patients to treat.”

Mozambique: “As we are getting our HIV problem under better control, we see the impact of HCV that is threatening our achievements but it is a silent killer and people don’t know they have it until it’s too late.”

Indonesia: “HCV is wiping out a whole generation of people who at some point in their lives used drugs or were unlucky to get a contaminated injection or blood product. We can and need to urgently intervene and diagnostics are the first step!”
Unmet Needs - HCV

A. Passive & active screening with serological tests
B. Core antigen test for POC diagnosis
C. Molecular tests for POC diagnosis
D. Test of cure

eHealth and connectivity solutions

Community health worker → Health post → Clinic → District hospital → Reference centre
Today, HCV infection is severely under-diagnosed

<8% of cases diagnosed in MICs, <1% less in LICs

Roots of under-diagnosis include lack of appropriate tools & delivery issues

• Absence of policy, commitment and funding
 • Lack of policy
 • Lack of funding from countries /donors

• Diagnostics not suitable and too costly
 • Algorithms for diagnosis too complex and costly
 • Limited developer investment due to unclear market/pathway to uptake
 • Serological tests of variable quality
 • NAAT-based Dx tools to confirm infection + monitoring can only be done at centralized labs

• No market development in LMIC
 • Low demand due to lack of awareness of disease burden & cost
 • Lack of demand aggregation and forecasting for pricing negotiations

• Treatment regimens are complex and expensive

Lack of reliable data for LMICs. Available data suggests a major problem of under-diagnosis

Impossible for low-income countries to diagnose and treat patients at scale

1. Low & Middle Income Countries
Source: Decision resources; UNITAID: Hepatitis C Medicines and Diagnostics in the Context of HIV/HCV Co-Infection: A Scoping Report (October 2013)
WHO 2014 WHA resolution, strategy and targets

• 67th WHA 2014, Hepatitis Resolution reaffirming:
 • Hepatitis as a global public health problem
 • Need for governments and populations to take action to prevent, diagnose and treat viral hepatitis
 • Need to WHO to develop and implement comprehensive global strategy to support these efforts
 • Concern at slow pace of implementation

• WHO HCV Strategy:
 • Priorities include: HBV vaccination – childhood coverage; PMTCT of HBV – incl birth dose vaccination; safe injection, blood and med procedures; harm reduction for PWID; HBV Tx (lifelong); HCV Tx (cure)

• First ever WHO targets for elimination of viral hepatitis (2015 baseline):
 • Reduction in new cases of chronic hepatitis B and C by 30% (2020) / 90% (2030)
 • Reduction in hepatitis B and C deaths by 10% (2020) / 65% (2030)
 • 80% of treatment eligible persons with chronic hepatitis B and C infections treated by 2030
Dramatic diagnostic simplification possible with new DAAs
Potential for dramatic simplification of HCV diagnosis in the mid- to long-term

Current
- Screening – RDT/ELISA: $17-55
- Quantitative molecular – for confirmation of active infection: $17-80
- Genotype: $20-478
- Biomarker/Imaging/Biopsy – for staging: $100-1,625
- +/- IL28B - for prognosis: $300
- Quantitative molecular - Test of treatment response: $17-320
- Quantitative molecular - Test of cure: $17-80

Short-term
- Screening – RDT
- Quantitative molecular – for confirmation of active infection
- Biomarker/Imaging/Biopsy – for staging
- Quantitative molecular - Test of treatment response
- Quantitative molecular - Test of cure

Mid-term
- Screening – RDT
- Qual/Quant - for confirmation of active infection
- Biomarker – Cirrhosis versus no cirrhosis
- Qual/Quant molecular - Test of cure

Costs:
- $17-55
- $17-80
- $20-478
- $100-1,625
- $300
- $17-320
- $17-80
- <$20
- <$3
- <$20
One vs two step Dx strategy (depending on prevalence, cost, ease-of-use, LTFU etc)

TWO-STEP DIAGNOSIS

1. RDT for HCV antibodies
 - Screening: high sensitivity, low specificity
2. Treatment

ONE-STEP DIAGNOSIS

1. HCV virological test
 - POC test: high sensitivity, high specificity
2. Treatment
The current standard of HCV monitoring during HCV treatment with PEG-IFN-alpha
Source: EASL Clinical Practice Guidelines: 2013 revised version. Clinical practice guidelines to optimize the management of hepatitis C virus infection.

<table>
<thead>
<tr>
<th>Antibody screening</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virological confirmation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Liver staging</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>IL-28B</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Genotype</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Viral load</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Complete blood count with differential</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Thyroid stimulating hormone</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Clinical chemistry and haematology</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alpha-fetoprotein</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Lipids panel</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Baseline</th>
<th>Week 4</th>
<th>Week 12</th>
<th>End of treatment (week 24)</th>
<th>SVR12</th>
<th>SVR24</th>
</tr>
</thead>
</table>

The proposed standard of diagnostic monitoring with an ideal, all oral, pan-genotypic regimen

HCV core antigen or RNA (qualitative)	x	x	x
Alanine transaminase	x	x	x
Creatinine	x	x	x
Haemaglobin	x	x	x

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Baseline</th>
<th>Week 4</th>
<th>End of treatment (week 12)</th>
<th>SVR12</th>
</tr>
</thead>
</table>

Patterns of HCV RNA levels in individuals with well-characterized acute HCV infection in the InC3 study (total n = 162); source: Hajarizadeh PLOS one 2015
Sensitivity - What is good enough?

- ~ 95% individuals have HCV RNA > 10,000 IU/ml in chronic infection

- Subset of patients with persistent infection have **partial viral control** and drop to at least >1,000 IU/mL temporarily (several months) but then go back to a viral load >100,000 IU/mL between months 10 and 12

- Abbott Architect: sensitivity of 1000-3000 IU/ml

- Therefore unlikely to need very sensitive tests, which means testing using small blood volumes (e.g. fingerstick blood) or core antigen is much more feasible

- Awaiting systematic review of the evidence (Q2 2016) to confirm acceptable sensitivity for diagnosis and SVR12

Hajarizadeh PLOS one 2015
Glynn Transfusion 2005
Products available
Serological antibody screening tests

Only one regulatory approved RDT for HCV: OraQuick HCV Rapid Antibody Test
- Good performance, even in HIV co-infected
- Around USD17 in developing countries
- MSF get the lowest price at <USD8
- FDA approved: fingerstick whole blood
- CE marked: oral fluid, serum, plasma and fingerstick whole blood
- Oral fluid test useful for self-testing
- Manufactured in the US so freight can significantly increase cost
- Awaiting approval of other tests by WHO prequalification but mostly low quality tests submitted so unlikely to pass PQ
- Only EIAs (lab-based) WHO PQed so far: http://www.who.int/diagnostics_laboratory/evaluations/PQ_list/en/
- Donors and large procurers e.g. GFATM, PEPFAR have strict quality stds for procurement eligibility but HCV is largely domestically funded so countries often make a choice on price, not quality = no incentive for manufacturers to invest in better quality tests

There may be other CE marked tests but this has been difficult to confirm e.g. MP Biomedicals MULTISURE HCV (most likely first to receive WHO PQ)
Point-of-care virological tests (HCV RNA)

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>CD4</th>
<th>HIV EID</th>
<th>HIV VL</th>
<th>HCV VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alere</td>
<td>Pima Analyser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>FACSPresto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millipore</td>
<td>Muse Auto CD4/CD4% system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega Diagnostics</td>
<td>Visitect CD4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sysmex Partec</td>
<td>CyFlow miniPOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alere</td>
<td></td>
<td>q HIV 1/2 Detect</td>
<td>Xpert HIV-1 Viral Load</td>
<td>Xpert HCV Viral Load</td>
</tr>
<tr>
<td>Cepheid</td>
<td></td>
<td>Xpert HIV-1 qual</td>
<td>Xpert HIV-1 Viral Load</td>
<td></td>
</tr>
<tr>
<td>Diagnostics for the Real World</td>
<td></td>
<td>SAMBA HIV-1 Qual Test</td>
<td>SAMBA HIV-1 Semi Q Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAMBA II HIV-1 Qual Whole Blood Test</td>
<td>SAMBA II HIV-1 Semi Q Plasma Test</td>
<td></td>
</tr>
<tr>
<td>Molbio Diagnostics</td>
<td></td>
<td></td>
<td>Truelab/Truenat HIV</td>
<td>Truelab/Truenat HCV</td>
</tr>
<tr>
<td>Northwestern Global Health Foundation / Quidel</td>
<td></td>
<td>LYNX HIV p24 Antigen Test</td>
<td>Savanna Quantitative RealTime HIV-1 Assay</td>
<td>Not yet available</td>
</tr>
</tbody>
</table>

Lab-based virological tests (HCV RNA and core antigen, GT)

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>HIV EID</th>
<th>HIV VL</th>
<th>HCV VL</th>
<th>HCV CORE ANTIGEN</th>
<th>HCV GENOTYPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>RealTime HIV-1 Qualitative</td>
<td>RealTime HIV-1</td>
<td>RealTime HCV</td>
<td>ARCHITECT HCV Ag</td>
<td>RealTime HCV Genotype II</td>
</tr>
<tr>
<td>Biocentric</td>
<td>Generic HIV DNA Cell</td>
<td>Generic HIV Charge Virale</td>
<td>Generic HCV Charge Virale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bioMérieux</td>
<td></td>
<td>NucliSENS EasyQ HIV-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaviDi</td>
<td></td>
<td>ExaVir Load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hologic</td>
<td>Aptima HIV-1 Quant Dx Assay</td>
<td></td>
<td>Aptima HCV Quant Dx Assay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qiagen</td>
<td>artus HIV-1 RG RT-PCR</td>
<td></td>
<td>artus HCV RG RT-PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>artus HI Virus-1 QS-RGQ</td>
<td></td>
<td>artus HCV QS-RGQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Molecular</td>
<td>CAP/CTM HIV-1 Qualitative</td>
<td>CAP/CTM HIV-1</td>
<td>CAP/CTM HCV Qualitative</td>
<td>HCV Genotype Plus Real-TM</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td>and CAP/CTM HCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacace Biotechnologies</td>
<td>HIV Real-TM Quant Dx</td>
<td>HCV Real-TM Quant Dx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td>VERSANT HIV-1 RNA Assay</td>
<td>VERSANT HCV RNA Assay</td>
<td></td>
<td>VERSANT HCV Genotype 2.0 Assay</td>
<td></td>
</tr>
</tbody>
</table>

Point-of-care tests in the pipeline (optimistic)

Hepatitis C virus point-of-care diagnosis and treatment monitoring platforms: pipeline*

*Estimated as of September 2014 - timeline and sequence may change. ---- No market launch date set by company.

FIND and HCV
FIND’s strategy is focused on addressing challenges around diagnosis to meet global goals.

Long-term vision

Enable a world free of Hepatitis C

5-year goal

To support the Global Hepatitis Programme in its goals: to reduce transmission, reduce the morbidity and mortality, and reduce the socio-economic impact of viral hepatitis at individual, community and population levels.

Strategy objectives

1. Enable affordable and fit-for-purpose diagnosis
2. Enable access to diagnosis
3. Support the prevention of infection
4. Demonstrate the need and benefit of interventions for HCV
High-priority target product profile for hepatitis C diagnosis in decentralized settings:

Report of a consensus meeting

22 April 2015
Vienna, Austria

Principal of FIND development work

Prioritization & TPP dvlpt with consensus process; advocacy

Landscaping & opportunity description & partner building

Drive project to success: inform R&D; accelerate trial pathway; country rollout

HEV CORE ANTIGEN DETECTION: TECHNOLOGY SCOUTING

Table 1: First wave of selection.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Stages of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifeSpan (USA)</td>
<td>97%</td>
<td>99%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Centor (UK)</td>
<td>99%</td>
<td>99%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Shiga Solutions (Japan)</td>
<td>93%</td>
<td>97%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Innova Diagnostics (USA)</td>
<td>98%</td>
<td>97%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Siemens (USA)</td>
<td>97%</td>
<td>98%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Abbott (USA)</td>
<td>97%</td>
<td>99%</td>
<td>Clinical</td>
</tr>
<tr>
<td>Roche (USA)</td>
<td>99%</td>
<td>97%</td>
<td>Clinical</td>
</tr>
</tbody>
</table>

91 countries + Georgia
51 MIC + Myanmar + Nepal
22 countries
15 countries + Myanmar
India, Egypt, Cameroon, South Africa, Uzbekistan, Nepal, Georgia, Vietnam, Indonesia, Myanmar
Key resources
DIAGNOSIS AND TREATMENT OF HEPATITIS C:
A technical landscape

Opportunities to Revolutionise Care in Developing Countries

This report provides an overview on the current state of play and a framework for action with regards to hepatitis C diagnostics and treatment in resource-poor settings.

April 2014

MSF Access Campaign
Médecins Sans Frontières
Rue de Lausanne 78,
CP 116 CH-1211 Geneva 21
Tel + 41 (0) 22 849 84 05 Fax + 41 (0) 22 849 84 04
access@msf.org
www.msfaccess.org
www.facebook.com/MSFaccess
twitter.com/MSF_access
PUTTING HIV AND HCV TO THE TEST
A PRODUCT GUIDE FOR POINT-OF-CARE CD4 AND LABORATORY-BASED AND POINT-OF-CARE VIROLOGICAL HIV AND HCV TESTS

July 2015
FIND HCV Strategy

High-priority target product profile for hepatitis C diagnosis in decentralized settings:

Report of a consensus meeting

22 April 2015
Vienna, Austria

Key advocacy areas
Lessons learnt in 2015

- Delay in HCV testing due to lack of in-country guidelines or strategies on who to screen and how

- Poor quality of testing where counties use cheaper RDTs of unknown manufacturing quality and performance (OraQuick is the only approved test but expensive at USD17)

- DAAs are allowing for diagnostic simplification and decentralisation but guidelines and models of care haven’t caught up with this yet (still very conservative)

- Delay in access to DAA treatment in countries due to slow registration and companies having no incentive to apply for WHO prequalification (no donor purchasing of drugs therefore no quality policy) means delay in implementing HCV programming overall

- Reliance on external stakeholders and political will but no dedicated international funding available; preferential pricing normally not extended to MICs, and LMICs are struggling to pay everything domestically, means manufacturers are not convinced of a viable market
First WHO hepatitis testing will be released in Q2 2016 (HCV & HBV)
- Encourage countries to take them up!
- They include a public health approach to testing including high risk groups, RDTs, dried blood spots and uptake of testing, linkage to care and community-centric strategies

Lack of large donor funding for R&D and commodity purchasing
- Encourage large, classical donors to fund HCV (not just in the context of HIV co-infection)
- Work on innovative domestic financing e.g. social impact bonds/loans, other ideas?
- Establish best policy for pharma funding/partnerships/donations e.g. from Gilead, Merck and Abbott

Lack of affordable quality assured HCV RDTs for screening
- Key requirements for a POC RDT for use in resource- limited settings are a test that is accurate (close to 100% sensitivity and high negative predictive value, and equally accurate in HCV/HIV co-infection); simple (with minimal training requirements and no cold chain); reliable (WHO-prequalified, CE marked or FDA approved); and cheap, at <$2 per test
- Increased procurement by large, classical donors will provide incentive for quality RDTs
- Large procurers can also facilitate pooled procurement, increased volumes and competition for price reductions
- Countries should strengthen their quality policies for diagnostics in general (tender systems should be based on quality and performance, not just price)
- Ramping up of country HCV programmes will lead to price reductions due to increased volumes and competition

Advocacy
- Ramped up advocacy is needed for increased awareness for importance of HCV testing & funding
- Diagnosis is the first step to treatment!
Acknowledgements

HCV slide credits to: Claudia Denkinger and Elena Ivanova (FIND)
We believe
Simple, rapid, robust and affordable diagnostic solutions bring game-changing possibilities above and beyond their immediate benefit.

We believe
Our work can spark real progress in the health of lower and middle income countries and their populations.

We believe
With improved health comes greater hope: individuals empowered to support their families, revive businesses, and thrive in school.

Thank you/ Danke / Merci