GLOSSARY RESOURCES

The resources listed below were used as sources for the lists of terms at the end of each chapter:


Ballesteros A, Tural C, Fuster D, et al. (abstract WePeB6045) Haematological toxicity, effect on CD4 cell count and on body mass index (BMI) of combined treatment with Peg-Intron® (1.5 μg/kg/week) + ribavirin (400 mg/bid) for hepatitis C virus (HCV) infection in HIV+ patients on antiretroviral therapy (ART). XIV International AIDS Conference. Barcelona, Spain. 2002.


Bartlett JG. (abstract 19) Severe liver toxicity in patients receiving two nucleoside analogues and a non-nucleoside reverse transcriptase inhibitor. 8th Conference on Retroviruses and Opportunistic Infections. Chicago, Illinois. 2001


Bonancini M, Govindarajan S, Blatt LM. Patients co-infected with human immunodeficiency virus and hepatitis C virus demonstrate higher levels of hepatic HCV RNA. J Viral Hepat 6(3): 203-08. 1999.


Center for Biologics Evaluation and Research. Guidance For Industry: Use of nucleic acid tests on pooled and individual samples from donors of whole blood and blood components for transfusion to adequately and appropriately reduce the risk of transmission of HIV-1 and HCV (draft guidance). March 2002.


Foster GR, Fried MW, Hadziyannis SJ, et al. (abstract 189) Treatment of chronic hepatitis C with peginterferon alfa-2a (40KD) (Pegasys®) and ribavirin (Copegus®): patient age has a marked influence on the individual estimated probability of achieving a sustained virological response. 54th Annual Meeting of the American Association for the Study of Liver Diseases. Boston, Massachusetts. 2003.


E.32


Marcellin P et al. (abstract 4510.00) Peginterferon alfa-2a (40KD) (PEGASYS) plus ribavirin (COPEGUS) is an efficacious and safe treatment for chronic hepatitis C (CHC) in patients with compensated cirrhosis. 38th Annual Meeting of the European Association of the Study of the Liver (EASL). Geneva, Switzerland. 2003.


E.41


Mauss S, Berger F, Schmutz G, et al. (abstract 1218) A prospective, controlled study assessing the
treatment of chronic hepatitis C in patients on methadone maintenance. 54th Annual Meeting of


McCance-Katz EF, Gourevitch MN, Arnsten J, et al. Modified directly observed therapy (MDOT) for


McFarland W, Chen S, Hsu L, et al. Low socioeconomic status is associated with a higher rate of
death in the era of highly active antiretroviral therapy, San Francisco. J Acquir Immune Defic Syndr


McHutchison JG, Gordon SC, Schiff ER, et al. Interferon alfa-2b alone or in combination with

McHutchison JG, Poynard T, Piako S, et al. The impact of interferon plus ribavirin on response to

McHutchison JG, Shad JA, Gordon SC, et al. Predicting response to initial therapy with interferon
plus ribavirin in chronic hepatitis C using serum HCV RNA results during therapy. J Viral Hepat

response in genotype-1 infected patients with chronic hepatitis C. Gastroenterology 123:1061-69.
2002.


Mehta SH, Brancati FL, Sulkowski MS, et al. Prevalence of type 2 diabetes mellitus among persons


Pol S et al. (abstract 3530.00) High risk of mitochondrial toxicity in HIV/HCV coinfected patients under concomitant ddI/d4T and interferon (standard or pegylated IFN)/ribavirin treatments. 38th Annual Meeting of the European Association of the Study of the Liver (EASL). Geneva, Switzerland. 2003.


Rodriguez-Torres M, Rodriguez-Orengo J. (abstract 343) Efficacy of peg-interferon alfa-2a (PEGASYS) and RBV for HIV/HCV coinfected patients that are nonresponders to previous therapy. 54th Annual Meeting of the Association for the Study of Liver Diseases. Boston, Massachusetts. 2003.


E.64


Sulkowski MS, Thomas DL, Mehta SH, et al. (abstract 1125) Hepatotoxicity associated with the antiretroviral therapy (ART) containing protease inhibitors (PIs) with or without pharmacokinetic boosting by low-dose ritonavir (RTV). 54th Annual Meeting of the American Association for the Study of Liver Diseases. Boston, Massachusetts. 2003c.


Torriani FJ, Asensi V, Byrnes C, et al. (abstract WePeB6035) Hepatitis C RNA levels are unchanged after one year of effective antiretroviral therapy. XIV International AIDS Conference. Barcelona, Spain. 2002b.


Beales LP, Rowlands DJ, Holzenburg A. The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy. RNA 7(5):661-70. 2001.


Beeson PB. Jaundice occurring one to four months after transfusion of blood or plasma. Report of seven cases. JAMA 121:1332-34. 1943.


E.121


Lu HH, Wimmer E. Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci USA 93(4):1412-17. 1996.


Macejak D, et al. Nuclease-resistant ribozymes targeting the minus strand of hepatitis C virus (HCV) RNA can inhibit the replication of a chimeric virus in cell culture. Abstract 1109. 52nd Annual Meeting of the American Association for the Study of Liver Diseases. Dallas, Texas. 2001b.


Morris BC, Rumsby MG. The 5' untranslated region of protein kinase Cδ directs translation by an internal ribosome entry segment that is most active in densely growing cells and during apoptosis. Mol Cell Biol 22(17):6089-99. 2002.


Park JW, Gruys ME, McCormick K, et al. Primary hepatocytes from mice treated with IL-2/IL-12 produce T cell chemoattractant activity that is dependent on monokine induced by IFN-γ (Mig) and chemokine responsive to γ-2 (Crg-2). J Immunol 166(6):3763-70. 2001.


E.148


Vyasa J, Elia A, Clemens MJ. Inhibition of the protein kinase PKR by the internal ribosome entry site of hepatitis C virus genomic RNA. RNA 9(7):858-870. 2003.


Wang H, Eckels DD. Mutations in immunodominant T cell epitopes derived from the nonstructural 3 protein of hepatitis C virus have the potential for generating escape variants that may have important consequences for T cell recognition. J Immunol 162(7):4177-83. 1999.


