The potential role of PD-1/PD-L1 blockade in HIV Remission and Cure Strategies

Stephen Mason

Director, Discovery Virology

Bristol-Myers Squibb

Community Cure Workshop 2015

Sunday, Feb 22, 2015 Seattle, WA

Definitions and Quantifications of HIV cure

HIV remission likely will require combination of agents targeting different barriers to eradication

Bristol-Myers Squibb

Which combinations ...?

Immunomodulators

Enhance innate and adaptive immunity

Therapeutic Vaccine

Enhance antigen recognition

HIV Remission

Latency Activator

Activate & reduce the latent reservoir

Broadly Neutralizing Antibodies

Recognize and reduce the latent reservoir

Which combinations ...?

Immunomodulators

Enhance innate and adaptive immunity

Anti-PD-L1

Therapeutic Vaccine

Enhance antigen recognition

HIV Remission

Latency Activator
Activate & reduce the latent reservoir

Broadly Neutralizing Antibodies

Recognize and reduce the latent reservoir

PD-1/PD-L1 pathway in T cell exhaustion

- Virus-specific T-cells are critical to control of chronic viral infections^{1,2,3,4,5}
- PD-1 is a key inhibitory receptor affecting T-cell response⁶
 - ◆ Elevated on virus-specific T-cells in chronic HIV^{3,7}, HBV⁸ and HCV⁹ infection
 - Both CD4+ and CD8+ subsets
 - Cells display exhausted phenotype ex vivo / in vitro
 - Decreases with epitope escape mutation^{7,10} or control of infection^{3,4,7}
- PD-1/PD-L1 blockade restores function to exhausted T cells
 - ◆ Significant effects on T-cell function and viral load observed upon PD-1/PD-L1 blockade both *in vitro*^{3,4,11,12} and *in vivo*^{5,6,13}

PD-1 blockade in <u>unsuppressed</u> SIV-infected macaques

Treatment with α PD-1:

- Transiently affected viremia
- Restored T and B cell numbers & functions
- Prolonged survival

Velu et al, Nature 2009

PD-1 pathway blockade during suppressive cART?

Most relevant situation for HIV-infected patients

PD-L1 blockade in ARV <u>suppressed</u> SIVmac251-infected Rhesus Macaques

In collaboration with James Whitney (BIDMC, Boston)

Hypothesis:

- Treatment of ARV-suppressed SIV infected macaques with α PD-L1 should:
 - restore SIV-specific T cell function. Subsequently, this may:
 - reduce the latent SIV reservoir
 - lead to host control of virus following interruption of ARV

Study design:

- Determine whether multiple doses of BMS-936559 affect:
- 1. Cell-associated viral DNA (latent reservoir) in tissues and periphery,
- 2. Virus recrudescence after cessation of ARV treatment.

Individual post-TI VL rebound kinetics:

Comparison of BMS-936559- and Isotype-treatment groups

- All animals experienced rebound in viral load post-TI
- Most viral loads stabilized at an apparent a new set-point

Individual post-TI VL rebound kinetics: BMS-936559 Treatment Group

• BMS-936559 treatment group could be separated into two distinct groups: BMS-936559-responders and -non-responders

Individual post-TI VL rebound kinetics: BMS-936559 Treatment-response group

- BMS-936559-responders: 4 out of 8 BMS-936559-treated animals had lower viral loads
- 3 had episodic periods of undetectable VL

Individual data on kinetics of post-TI VL rebound: BMS-936559 Treatment-response group (2)

- 2 of 4 treatment responders had undetectable VL for 3-4 weeks
- These treatment responders remained below 1000 RNA cp/mL until the end of the study (day 170 post-TI)

Comparison of pre-ART and post-TI VL

 Most animals in the BMS-936559-treatment group had significantly lower post-TI VL compared to pre-ART VL set point

Comparison of pre-ART and post-TI VL

 Most animals in the BMS-936559-treatment group had significantly lower post-TI VL compared to pre-ART VL set point

Trend in Total SIV DNA

• SIV DNA in isotype group increased post-TI, but not in the BMS-936559 treatment responders

Bristol-Myers Squibb

Effect of Anti-PD-L1 in SIV-infected Monkeys

How can anti-PD-L1 post-ATI responses be expanded and sustained?

Combinations of modalities likely will be required to Achieve Remission...

...which ones?

Fully Addressing T Cell Exhaustion

Are multiple Checkpoint blockades required to fully restore T cell function?

Evidence that combination of αPD-L1 & Therapeutic Vaccination can clear chronic viral infections

LCMV mouse model of chronic viral infection

Combination therapy provided:

- Better virologic control both in periphery and tissues
- Correlated with improved LCMV-specific T cell number/function
- Produced a response in a greater number of animals

Can additional agents add to the arsenal?

BnAb therapeutic effect in viremic SHIV-infected monkeys

 Particularly effective in those animals with low baseline VL

Barouch et al., Nature 2013

Combination of BnAb with latency activators produced sustained effect in HIV/Hu Mouse model Bristol-Myers Squibb

Effect of a strong Latency Re-activating Agent on VL

Sogaard et al Melbourne, July 20. 2014

→ Screening and characterizing new compounds as LRAs

Model for effect of anti-PD-L1 in SIV study

Treatment with αPD-L1

BMS Strategy for HIV-1 Functional Cure: Dual Approach

Treatment with αPD-L1

Spectrum of virologic control and inflammatory states

Virologic suppression

Inflammation

Uncontrolled **HIV** infection

Viremic Suppressors **Elite**

CART controllers Suppressed

Remission

Bristol-Myers Squibb

- Complete HIV remission must surpass EC-state:
 - better virologic suppression
 - lower inflammatory state
- Can these states be approximated therapeutically as intermediate steps toward complete remission?
- Is there medical benefit to "Controller-like states" to make such intermediate goals worthwhile?

If Complete HIV remission is our goal...

...it likely will require:

- Combinations of modalities
- Intermediate goals to find the right combinations along the way to complete remission

Is there an intermediate state that would provide value to patients?

- What could that intermediate state look like?
 - Low level yet detectable viremic state?
 - Shorter periods of drug-free suppression?
 - Requiring re-dosing of agents?
 - How to reduce inflammation?

Acknowledgements

BIDMC Boston

- James Whitney
- Srisowmya Sanisetty
- Christa Osuna-Gutierrez
- So-Yon Lim

Gilead

Romas Geleziunas

BMS

Discovery Virology

- Dan Tenney
- Scott Balsitis
- Burt Rose
- Shalyn Campellone
- Michael Wichroski
- Charlie Mazzucco
- Ann Walsh
- Amy Sheaffer
- Bo Ding
- Huilin Qi
- Min Lee
- Sue Chaniewski
- Volodymyr Gali
- Mark Cockett

Immuno-Oncology

- Alan Korman
- Mark Selby
- Nils Lonberg

Discovery Medicine-Virology

- Carey Hwang
- David Gardiner
- Dennis Grasela

Global Clinical Research Virology

George Hanna

Clinical Pharmacology

Matt Hruska

Clinical Biomarkers

Neela Ray

Applied Genomics

Namjin Chung

Drug Safety Evaluation

- Matt Holdren
- Jake Lesniak

Preclinical Candidate Optimization

Narendra Kishnani

Contracts

Fred Asare

