B Cell Follicle Sanctuary Permits Persistent Productive SIV Infection in Elite Controllers: Implications for HIV Cure Research

Afat A. Okoye, Ph.D.
Vaccine and Gene Therapy Institute
Oregon National Primate Research Center
Oregon Health & Science University
The SIV reservoir is progressively seeded during early, acute SIV infection, preferentially in CD4+ memory T cells.

Cell-associated SIV DNA in sorted lymphocyte subsets

Peripheral blood

Lymph node

Limit of detection

TCM: CD4+ central memory
TTRM: CD4+ transitional memory
TEM: CD4+ effector memory
Naive
Monocytes
CD4Tfh
TrEM

... Suggesting early cART initiation would result in a significantly diminished viral reservoir.

TCM-associated viral load (log copies per 10^5 cells)

LN-associated viral load (log copies per 10^5 cells)
Indeed, early ART dramatically limits the peak and duration of viremia during acute SIV infection
The timing of ART initiation determines the level of cell-associated viral loads after 6 weeks of treatment.

Delay in ART for one day during earliest stages (days 4 to 7) has durable effect.
No virus detected in plasma, PBMC, or lymph node in monkeys treated on days 4/5 after several weeks of treatment
profiles that are almost identical to that seen in earliest treated humans (Hatano/DARE)
However . . . the functional reservoir persists!

30 million LN cells; copy Eq. cell-associated SIV DNA/RNA transferred:

Rh24458: 1 (one!) copy DNA; no detectable RNA
Rh27380: 4 (four!) copies DNA; no detectable RNA
The reservoir is BIG and it may take only 1 cell with latent replication-competent virus to prevent cure!

An >3 log reduction in reservoir size had NO “clinical” impact!

So what helps the virus persist?
In SIV+ monkeys on fully suppressive cART (pvl < 60 copies/ml), cell-associated SIV DNA is found at similar levels in both paracortical (non-\(T_{FH}\)) and follicular (\(T_{FH}\)) CD4\(^+\) memory cells.

But median cell-associated SIV RNA levels are >5 fold higher in the small (~14%) CD4\(^+\) \(T_{FH}\) subset.
Localization of Follicular CD4+, PD-1+, CD200+ T^{FH} is restricted to B cell follicles

So why is this “bad” from a cure perspective
Most CD8$^+$ effector T cells lack the appropriate chemokine receptors for B cell follicle entry and therefore are largely excluded from B cell follicles.

CD20 (white) and CD8$^+$ (red) staining of axillary lymph node
Hypothesis: Host/Immune control of WT virus results in progressive restriction of virus to B cell follicle CD4+ T_{FH}
Coculture Assay for Replication Competent LN/Spleen CD4+ Memory T cell Subsets
Immune control of LAV Associated with Progressive Restriction of Virus to PD-1+, CD200+, CD4+ GC T_{FH}
Productive SIV infection becomes increasing restricted to intrafollicular CD4+ T cells \((T_{FH})\) with higher levels of immune (CD8+ T cell-mediated) control.
Immune control of SIV is Associated with Restriction of Virus (Replication competent, vRNA, vDNA) to PD-1+, CD200+, CD4+ T_{FH}
Anatomical Restriction of Virus to GC with Immune Control
Depletion of CD8+ T cells and NK cells with Anti-CD8 mAb
Transient CD8-Depletion Associated with Transient Expansion of Virus Beyond CD4+, PD-1+, CD200+ T_{FH}
Transient CD8-Depletion Associated with Transient Expansion of Virus Expression Beyond CD4+, PD-1+, CD200+ T_{FH}
Virus Expansion with Transient CD8-Depletion is Due to Loss of CD8+ T Cell Control Not Proliferative Responses
Summary

• Under conditions of host restriction (EC, cART), virus is progressively restricted to B cell follicle CD4+ T_{FH}.

• Failure to clear likely due to lack of efficient trafficking of antiviral CD8+ T cells to follicles.

• Suggests B cell follicles are a source for residual viral replication, maintenance of immune responses; potential source of residual immune activation, viral evolution/escape.

• Barrier to complete viral clearance/cure.
As B cell follicles exclude most CD8+ T cells, compromising anti-viral effector responses therein, it creates a sanctuary for productive SIV infection of intrafollicular CD4+ T_{FH}

The finding that in monkeys with cART-suppressed infection, that residual SIV replication and/or reactivation preferentially occurs within this sanctuary suggest that efforts to use CD8+ T cell responses to purge reservoirs after latency induction will be hampered, if not completely stymied, by this SANCTUARY!
Two on-going studies will ask whether, and to what extent, RhCMV/SIV vectors will be able to clear or control cART-suppressed SIV infections when used as a therapeutic vaccine.

cART cessation planned for mid-2015
“I believe HIV cure is achievable, but not with a single ‘Magic Bullet’ modality (even CMV vectors). Rather, cure will require a multi-modal therapeutic approach to 1) stop viral spread, 2) induce latent virus reactivation, 3) surmount ‘sanctuaries’, and 4) kill (likely all) viral Ag+ cells, which must be based on a fundamental understanding of virology and immunobiology of cART-suppressed infections”...

Louis J. Picker, M.D.
Picker Group:
- Yoshinori Fukazawa
- Richard Lum
- Haesun Park
- Mukta Rohankhedkar
- Matthew Reyes
- Derick Duell
- Joseph Clock
- Jin Young Bae
- Andy Sylwester
- Shoko Hagen
- Abigail Ventura
- Roxanne Gilbride
- Colette Hughes
- George Xu
- Julia Ford
- Scott Hansen

VGTI/ONPRC:
- Michael Axthelm
- Alfred Legasse
- Shannon Planer
- Tonya Swanson
- John Turner
- Christoph Kahl

Outside collaborators:
- Jeff Lifson (Leidos)
- Mike Piatak, Jr. (Leidos)
- Kelli Oswald (Leidos)
- R. Shoemaker (Leidos)
- Yuan Li (Leidos)
- Peter Barry (UCD)
- Paul Edlefsen (FHCRC)
- Steve Deeks (UCSF)
- Jake Estes (Leidos)
- Claire Deleage (Leidos)
- Carissa Lucero (Leidos)
- David Morcock (Leidos)
- Kenta Matsuda (NIAID)
- Vanessa Hirsch (NIAID)
- R. Geleziunas (Gilead)
- J. Hesselgesser (Gilead)

Funders:
- NIAID [RO1 AI060392; P01 AI094417; R01 AI095113; R01 DE021291; R37 AI054292; U19-AI095985 (NHP consortium); U19 AI096109 (DARE consortium)]
- Bill and Melinda Gates Foundation