HIV Cure Research Ethics Update Considerations for Cell and Gene Therapies

Lulu

Nana

Karine Dubé, DrPH, UNC Gillings School of Global Public Health Michael Louella, defeatHIV Community Advisory Board

> 2019 Pre-CROI Community HIV Cure Research Workshop Sunday, March 3, 2019

What Happened with the Chinese Gene-Edited Babies?

- He Jiankui, Assistant Professor South University of Science and Technology (China)
- Use of CRISPR/Cas9 technology to edit genes for the HIV co-receptor CCR5 in human embryos for implementation
- Public announcement at the Start of the Second International summit on Human Genome Editing (Hong Kong, November 2018)
- Male partner HIV-positive \rightarrow HIV-negative offspring
- Led to birth of twins who were mutated for CCR5 genes

He Jiankui

Why Was This Event So Controversial?

SOMATIC

THERAPY

ENHANCEMENT

GERMLINE

How Did Our Community React?

"TAG joins with the scientists and the ethicists who are condemning the work as unethical, unjustified, and potentially dangerous" – Richard Jefferys

http://www.treatmentactiongroup.org/content/treatment-action-group-statement-reported-birth-twins-edited-ccr5-genes

How Did the Risks **Outweigh** the Benefits?

- There are safe, effective and easier options to prevent mother-tochild transmission and treat HIV
- Alteration of germ line
- Incomplete ability of CCR5 gene deletion to prevent HIV acquisition
- Safety of experimenting with CRISPR/Cas-9 in human embryos not well-established
- Informed consent process questionable
 - Was there exploitation/coercion?
- Did robust regulatory/ethics review occur?
- Secretive experiment followed with **public announcement before carefully peer-reviewed data** undermined credibility

Risk

Benefit

What Are Some Other Ethical Issues?

- Failure to determine appropriate study participants ('subject selection')
 At least one of the twins was a mosaic nothing gained but exposed to risks
 - Editing took place after embryo started cell divisions
 - Patch work of edited and unedited cells
- What happened to the other embryos generated through IVF that were gene-edited?
- He claimed another woman is pregnant who received embryos created the same way
- Slippery slope for enhancements, designer babies, eugenics
- Deletion of CCR5 gene could increase risk for other viruses, such as West Nile (risk exchange)

Could a single experiment put an entire field in danger?
 http://www.treatmentactiongroup.org/content/treatment-action-group-statement-reported-birth-twins-e

Informed Consent Issues

Version: Female 3.0

INFORMED CONSENT

The research team is launching an AIDS vaccine development project. As the volunteer, your partner is diagnosed to have Acquired Immunodeficiency Syndrome (ADIS) or has been infected with Human Immunodeficiency Virus (HIV). Your health and other conditions are in line with the research's enrollment conditions. Therefore, the research team would like to invite you to participate in the research.

"The research team is launching an AIDS vaccine development project."
"Gene editing in the embryo would knock out the CCR5 gene. It would help these CCR5 editing babies to obtain the genotype of the Northern European to naturally immunize against HIV-1 virus"

• "...decrease the risk of off-target issues and other risks"

 "This technique may be able to produce IVF baby naturally immunized against AIDS"

"There is a possibility that some embryos do not have anti-AIDS ability"

 "The project team is not responsible for the risk of off-target which is beyond the risk consequences of the existing medical science and technology"

- "Neonatal malformations, congenitally [sic] deficiency, suffering from common genetic diseases belong to the scope of natural risk of natural reproduction, the project team does not assume legal responsibility"
- Possible benefit: "This research project will likely help you produce HIVresistant infants" [rest of the consent form explains how infant could still have HIV]
- "If you decide to leave the study due to other reasons (...), you will need to pay back all the costs that the project team has paid for you. If the payment is not received within 10 calendar days from the issuance of the notification of violation by the project team, another 100,000 RMB of fine will be charged"
- "Baby's photo on the day of birth will be kept by the project team. The project team has the portrait right of the infant and can make it open to the public"

Ethical Considerations for Cell and Gene Therapy

Favorable Risks and Benefits Balance

- Risk/benefit assessment is one of the fundamental requirements in ethical review of research involving human participants (Aarons)
- Research must have higher chance of doing good, overall, than doing harm*
- Researchers should minimize risks and maximize benefits
- Need to protect participants from excessive risks
- Difficult to evaluate because there can be asymmetries

Ethical Considerations for Cell and Gene Therapy

Other Things to Consider in Evaluating Risks

- Innovativeness of interventions
- Modes of actions
- Nature of the target
- Relevance of animal models (pre-clinical evidence)
 - Stronger evidentiary justification needed for specific groups
- Uncertainty (major hallmark of FIH studies)

Gene Modification

Zinc finger

TAL Effector
 Nuclease

CRISPR/Cas9

MegaTals

Assessing Risks and Perceptions of Gene Therapy

original article-

© The American Society of Gene & Cell Therapy

Gene Therapy Researchers' Assessments Of Risks And Perceptions Of Risk Acceptability In Clinical Trials

Claire T. Deakin^{1,2}, Ian E. Alexander^{1,3}, Cliff A. Hooker^{2,4} and Ian H. Kerridge^{2,5}

¹Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, New South Wales, Australia; ²Centre for Values, Ethics and the Law in Medicine, School of Public Health, Sydney Medical School, The University of Sydney, New South Wales, Australia; ³Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, New South Wales, Australia; ⁴Faculty of Education and Arts, University of Newcastle, New South Wales, Australia; ³Department of Hematology, Royal North Shore Hospital, New South Wales, Australia.

		No available treatment, death in infancy	No available treatment, death in early adulthood	No available treatment, death in childhood/ adolescence	No available treatment, life expectancy reduced by 20 years	Disease curable by bone marrow transplant, with risks and side-effects	Disease controlled by blood transfusions	Disease controlled by diet
Cell culture only, kno mouse available in 2	ock-out 2 years	56.4%	53.2%	42.9%	28.8%	19.9%	16.0%	9.0%
Cell cultu	re only	61.5%	57.1%	46.2%	33.3%	26,9%	19.9%	10.9%
Poor mouse	model	81.4%	81.4%	71.2%	56.4%	44.2%	33.3%	23.7%
Good mouse model, large study would delay trial by 3	animal 3 years	86.5%	87.2%	76.9%	59.6%	50.0%	37.8%	30,1%
Good mouse model and dat related phase I trial w frequenc	ta from /ith low cy AEs	91.0%	91.0%	86.5%	71.8%	61.5%	41.0%	30,1%
Good mouse	model	90.4%	90.4%	88.5%	73.7%	64.7%	54.5%	39.1%
Good mouse model and dat related phase I trial with r	ta from no AEs	96.2%	96.8%	96.8%	93.6%	82.1%	76.9%	64.7%
Large animal	model	97.4%	99.4%	98.7%	93.6%	90.4%	83.3%	72.4%

Figure 1 Percentage of respondents who agreed it would be appropriate to recruit subjects to a phase I clinical trial for each of the hypothetical clinical scenarios based on data generated in each of the preclinical models. The radii of the circle behind each of the percentage values represents the relative proportions of respondents who agreed it would be appropriate to recruit subjects to a phase I trial. AEs, adverse events.

- International survey to investigate gene therapy researchers' perceptions and assessments of risks in clinical trials (n = 156)
- Strength of pre-clinical evidence strongly influenced risk disease severity, assessments, judgements of acceptable risk levels, perceptions of uncertainty, adverse events and perceived patient needs, and perceived validity/utility of pre-clinical models
- Differences between stakeholder types
- We have not yet done this research of gene therapy related to HIV cure

Choice of Study Population Matters Greatly

Table 2. Framework for risk-benefit analysis for HIV-1-infected patient populations that could be targeted with HSPC-based gene therapy.

No	HIV/AIDS Current Rx Options		Aspects of SOC Rx for	Potential Benefit of	Real or Potential Risks of	Diele Bonefit Analysis	
110.	Subpopulation	for HIV-1 infection HIV-1 infection		Research Rx	Research Rx	KISK: Denent Analysis	
1	HIV/AIDS pts on cART (controlled viremia and CD4 counts >500/μL)	cART	<10% treatment failure Outcome expectations excellent	Minimal to no potential benefit since virus control and CD4 counts are adequate	Transient myeloid dysfunction Unknown effects of genetic modification & HSPC mobilization	Unfavorable; first in human trial cannot be justified in this group	
2	AIDS pts off cART (side effects to cART or cART "fatigue")	Symptomatic Rx if cART not tolerable	Heightened potential for AIDS progression	Improved control of HIV-1	Transient myeloid dysfunction Unknown effects of genetic modification & HSPC mobilization	Favorable but conditioning adds unnecessary risk in these patients who are already drug adverse	
3	AIDS pts on cART, with incomplete immune recovery with suboptimal CD4 levels	cART Treatment as indicated for infections	Poor expected outcome	Expansion of CD4 count Potential for improved control of HIV-1	Transient myeloid dysfunction Unknown effects of genetic modification & HSPC mobilization	Favorable	
4	AIDS pts who do not respond to cART	Research therapy with new antivirals	Poor expected outcome	Improved control of HIV-1	Transient myeloid dysfunction Unknown effects of genetic modification & HSPC mobilization	Favorable but limitation of subject availability	
5	ARL pts in remission following frontline Rx	cART Treatment as indicated for infections	Remission stable Outcome expectations very good; concern for risk of myelodysplasia	Minimal to no potential benefit IF virus control and CD4 counts are adequate	Transient myeloid dysfunction Unknown effects of genetic modification	Less favorable due to potential for myelo-dysplasia post-chemotherapy and conditioning	
6	ARL pts on salvage therapy (transplant)	cART Treatment as indicated for infections	Outcome expectations good; concern for myelodysplasia risk	Minimal to no potential benefit IF virus control and CD4 counts are adequate	Transient myeloid dysfunction Unknown effects of genetic modification	10%–20% potential for myelodysplasia post-transplant and conditioning	

DiGiusto DL et al. Development of Hematopoietic Stem Cell Based Gene Therapy for HIV-1 Infection: Considerations for Proof-of-Concept Studies and Translation to Standard Medical Practice. *Viruses* 2013; 5, 2998 – 2919.

Regulatory Perspectives

Table 1	A Bogulatory	Doronoctivo on	Ecosibility to	Surmount Conon	o Editing Sofoty	and Efficiency Challenges
Table 1.	A negulatory	Perspective on	reasibility to	Surmount Genon	ie-Euling Salety	and Enleacy Challenges

	Regulatory Feasibility			
Challenges	to Overcome	Approaches to Address Challenges		
Off-target activity, resulting in insertion or deletion mutations and/or chromosomal translocations	moderate	 assays to predict and identify off-target activity and/or translocations in place 		
		 biological assays to evaluate functional consequences of off-target activity still in development 		
Necessity to maximize efficiency of designer nuclease delivery and to control nuclease expression level and duration	moderate to high	 in vivo CRISPR-Cas delivery (mRNA, protein) via lipid nanoparticles may help to fine-tune level and duration of nuclease expression 		
		 ex vivo delivery of nuclease encoding mRNA by electroporation allows fine-tuning level and duration of nuclease expression 		
		 ex vivo delivery of nucleases in the form of DNA can be inefficient and induce high cytotoxicity 		
Inaccurate or random donor DNA (AAV or IDLVs, oligodeoxynucleotide donors) integration in the	moderate to high	 assays to detect random integration of AAV and IDLVs in place 		
genome		 randomly integrated oligodeoxynucleotides are difficult to detect 		
Highly variable tissue distribution of desired <i>in vivo</i> genome-editing event	moderate	 collection and assessment of a diverse panel of all major organs and tissues 		
Potential of immune reaction to nuclease components of current gene-editing systems	moderate	 use of immune suppression may be required 		

Abou-El-Enein M, Cathomen T, Ivics Z, June CH, Renner M, Schneider CK, Bauer G. Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment. Cell Stem Cell 2017; 21: 427 – 30.

U.S. Attitudes of Human Genome Editing

Acceptance of gene editing

A majority finds use of human genome editing for therapeutic purposes acceptable, including somatic and germline edits. Public opposition increases for applications aimed at enhancement.

Scheufele DA, Xenos MA, Howell EL, Rose KM, Brossard D, Hardy BW. U.S. Attitudes on Human Genome Editing. Science 2011; 357(6351): 553 – 4.

Prevailing Public Perceptions Matter

HUMAN GENE THERAPY 25:740–746 (August 2014) © Mary Ann Liebert, Inc. DOI: 10.1089/hum.2014.030

Prevailing Public Perceptions of the Ethics of Gene Therapy

Genetic treatments for diseases will have an overall positive impact on society because they will make people healthier and reduce suffering One day, gene therapy will be able to provide a possible cure for a large number of diseases The benefits of gene therapy will be greater than the harm it may cause It is too risky to try to change people's genes It is always wrong to change someone's genes before they are born, even if it's to cure a disease Interfering with people's genes should not be allowed because it goes against nature 20% 40% 60% 80% 100%

■ Agree ■ Neutral ■ Disagree

Robillard JM, Roskam-Edris D, Kuzeljevic B, Illes J. Prevailing Public Perceptions of the Ethics of Gene Therapy. Human Gene Therapy 2014; 25: 740 – 6.

FDA Statement January 2019

Statement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., Director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies

- "The FDA is witnessing a surge of C> products entering early development"
- "We anticipate that by 2020 we will be receiving more than 200 INDs per year"
- "By 2025, we predict that the FDA will be approving **10 to 20 C> products a year**"
- "We're working to expand our review group dedicated to the evaluation of these applications to keep pace with the rapid expansion in new product development"
- "The FDA plans to introduce additional new policy guidance and other advances in our drug development framework in 2019"
- "Though we are very encouraged by the advances in science and clinical development in this field, we remain concerned at the FDA that a number of individuals (...) are working **outside of regulatory** compliance"
- "We plan additional enforcement actions in 2019 to address products that pose a significant risk of potential harm to patients" <u>https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm629493.htm</u>

Safeguards in Place

- FDA Investigational New Drug (IND) application process
- NIH Recombinant DNA Advisory Committee (RAC) (established in 1974)
 - Points to Consider in the Design and Submission of Protocols for the Transfer of Recombinant DNA Molecules into One or More Human Research Participants
- Good Manufacturing Practices (GMP) (ensures safety, purity and potency)
- FDA Guidance documents

WHO Forms Committee to Guide Editing of Human Genes

TREATMENTS

World Health Organization Forms Committee To Guide Editing Of Human Genes

February 14, 2019 · 3:02 PM ET

WHO expert advisory committee on Developing global standards for governance and oversight of Human Genome editing Membership The World Health Organization is pleased to announce the membership of the WHO Expert Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome editing.

https://www.who.int/ethics/topics/human-genome-editing/committee-members/en/

Experiments on Gene-Edited Embryos on U.S. Soil

- Team at Columbia University examining newly fertilized eggs injected with CRISPR editing tools
- Goal is to prevent inherited diseases, such as Tay-Sachs, cystic fibrosis, Huntington's disease, retinitis pigmentosa (blindness)
- Developmental biologist Dieter Egli conducting experiments 'for research purposes'
- Egli stops modified embryos from development beyond Day 1

https://www.npr.org/sections/health-shots/2019/02/01/689623550/new-u-s-experiments-aim-to-create-geneedited-human-embryos_

Discussion Points for the Community

- What is our obligation to respond as a community?
- Should the use technology like CRISPR/Cas-9 be controlled?
- How do we prevent scientists like He from going rogue?
- What about assessing risks for combination gene therapy approaches?
- What about fetal cell and gene therapy or cell and gene therapy in pediatric populations?
- Is there a fine line between therapeutic/preventive warrant and research purposes?
- Should we consider unmet needs of study participants in ethical decision-making?

OUR COLLABOARTIVE MANUSCRIPT IS IN

- "ACCEPTABILITY OF CELLAND GENETHERAPY FOR CURING HIV INFECTION AMONG PEOPLE LIVING WITH HIV IN THE PACIFIC NORTHWEST UNITED STATES: A QUALITATIVE FOCUS GROUP STUDY" – SUBMITTED TO AIDS RESEARCH & HUMAN RETROVIRUSES ON JAN 21, 2019
- We wish to thank the defeatHIV Community Advisory Board and its coordinator, Michael Louella, for their role in our investigation. The impetus for this qualitative research is the direct result of their engaging communities affected by HIV in the cure-related research enterprise. It is solely due to their steadfast advocacy for more focus on people's perceptions of cell and gene therapy as a potential HIV cure strategy that this research was conducted; and for their efforts and their willingness to work as equal partners with our research staff, they are to be commended.

SPECIAL THANKS TO KARINE DUBÉ

References

- Aarons DE. Exploring the Risk/Benefit Balance in Biomedical Research: Some Considerations. *Rev bioét.* (Impr.) 2017; 25(2); 320 -7.
- Abou-El-Enein M, Cathomen T, Ivics Z, June CH, Renner M, Schneider CK, Bauer G. Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment. Cell Stem Cell 2017; 21: 427 – 30.
- Chapman AR. Addressing the Ethical Challenges of First-in-Human Trials. *Journal of Clinical Research & Bioethics* 2011; 2:4.
- Deakin CT, Alexander IE, Hooker CA, Kerridge IH. Gene Therapy Researchers' Assessments of Risks and Perceptions of Risks Acceptability in Clinical Trials. Molecular Therapy 2013; 21(4): 806 – 15.
- DiGiusto DL, Stan R, Krishnan A, Li H, Rossi JJ, Zaia JA. Development of Hematopoietic Stem cell Based Gene Therapy for HIV-1 Infection Considerations for Proof of Concept Studies and Translation to Standard Medical Practice. Viruses 2013; 5: 2898 – 919.
- Dresser R. First-in-Human HIV-Remission Studies: Reducing and Justifying Risk. *Journal of Medical Ethics* 2017; 43(2): 78 81.
- Evans D. An Activist's Argument that Participant Values Should Guide Risk-Benefit Ratio Calculations in HIV Cure research. *Journal of Medical Ethics* 2017; 43(2): 100 3.
- Joffee S, Miller FG. Rethinking Risk-Benefit Assessment for Phase I Cancer Trials. Journal of Clinical Oncology 2006; 24(19): 2987 90.
- King NMP. RAC Oversight of Gene Transfer Research: A Model Worth Extending? *Journal of Law, Medicine & Ethics* 2002; 30: 381 9.
- Lo B, Grady C, Ethical Considerations in HIV Cure Research: Points to Consider. *Current Opinions in HIV/AIDS* 2013; 8(3): 243 9.
- National Academies Press. Human Genome Editing: Science, Ethics and Governance. 2017. Available at: <u>https://www.nap.edu/catalog/24623/human-genome-editing-science-ethics-and-governance</u>
- Palpant NJ, Dudzinski D. Zing Finger Nucleases: Looking Toward Translation. *Gene Therapy* 2013; 20: 121 7.
- Rid A, Wendley D. A Framework for Risk-Benefit Evaluations in Biomedical Research. *Kennedy Institute of Ethics Journal* 2011; 21(2): 141 79.
- Scheufele DA, Xenos MA, Howell EL, Rose KM, Brossard D, Hardy BW. U.S. Attitudes on Human Genome Editing. Science 2011; 357(6351): 553 – 4.
- Robillard JM, Roskam-Edris D, Kuzeljevic B, Illes J. Prevailing Public Perceptions of the Ethics of Gene Therapy. Human Gene Therapy 2014; 25: 740 – 6.