Pipeline Report » 2021

HIV Vaccines & Passive Immunization

The HIV Vaccines and Passive Immunization Pipeline 2021

By Richard Jefferys

The most highly anticipated results to emerge over the past year came from the Antibody-Mediated Prevention (AMP) studies, which assessed the efficacy of passive immunization with intravenous infusions of the broadly neutralizing antibody (bNAb) VRC01 given every eight weeks.

The AMP studies comprised two separate trials: HVTN 704/HPTN 085 recruited 2,699 men and transgender people who have sex with men in Brazil, Peru, Switzerland, and the U.S., while HVTN 703/HPTN 081 recruited 1,924 cisgender women in Botswana, Kenya, Malawi, Mozambique, South Africa, Tanzania, and Zimbabwe.

The results were announced by press release on January 26, 2021, and presented a day later at the virtual HIVR4P conference. A manuscript was subsequently published in the *New England Journal of Medicine*. Overall, outcomes were disappointing: VRC01 did not demonstrate protective efficacy in either trial. Combining the results of the two trials, there were 67 HIV infections in placebo recipients (4.3% of this group), 60 among those given a 10mg dose of VRC01 (3.9%) and 47 in recipients of a 30mg dose (3%). The slightly lower numbers in the VRC01 groups were not statistically significant. The explanation for the lack of efficacy was that the majority of circulating HIV variants showed greater resistance to VRC01 than the researchers had predicted when the studies were planned.

There was, however, evidence from a subset of participants that protection was achieved against HIV variants that were highly sensitive to VRC01 (these variants were estimated to represent about 30% of the viruses circulating in the communities where the trials were conducted). This analysis was preplanned in the study protocols, and it found that the incidence of infection with VRC01-sensitive HIV isolates was 0.2 per 100 person-years among VRC01 recipients compared with 0.86 per 100 person-years among placebo recipients (representing a total of nine HIV infections in the VRC01 groups and 19 in the placebo group). The results of this subset analysis indicated an estimated 75.4% efficacy of VRC01 against HIV that was highly sensitive to the bNAb.

The researchers leading the AMP studies conclude that these data offer "proof of concept" that a bNAb can prevent HIV infection. Information from the trials may also help define threshold levels that bNAbs need to achieve to protect against HIV. The completion of the large and logistically complex trials should be considered a success and a testament to the commitment of the participants and many collaborators involved.

The major challenge highlighted by the results is that the concentration of VRC01 required to prevent HIV was higher than predicted (by approximately tenfold). Lawrence Corey, the head of HVTN and presenter of the AMP results at HIVR4P, has since written in a commentary that the findings indicate that "large doses of combination monoclonal antibodies to cover the broad spectrum of HIV isolates would be required to advance this concept further."

As reflected in the passive immunization pipeline table below, multiple bNAb candidates are being evaluated both individually and in combinations, including constructs designed to be long-acting to allow less frequent administration. Single antibodies capable of targeting more than one site on HIV—referred to as bispecific or trispecific antibodies—are also under investigation. Most of these bNAbs were discovered more recently than VRC01 and display stronger inhibitory activity against HIV in laboratory testing.

The robust bNAb pipeline offers some hope for the future of passive immunization, but questions remain about prospects for practical application. The parts of HIV targeted by bNAbs are typically more prone to mutation and the generation of resistance than those targeted by antiretroviral drugs, a potential issue highlighted by initial results from a <u>study of a triple bNAb combination</u> in HIV-positive people that demonstrated relatively transient viral load suppression (see this <u>video presentation</u> by Dan Barouch at the 2021 HVTN Full Group Meeting, starting at 1:36:35).

Additionally, bNAb delivery can currently be accomplished only via intravenous infusion or subcutaneous injection. The extremely high efficacy observed with both oral and injectable pre-exposure prophylaxis (PrEP) using antiretroviral drugs sets a very lofty bar that passive immunization will need to reach to be considered for implementation (see TAG's PrEP and Microbicides Pipeline Report for additional information).

On the HIV vaccine front, results are expected very soon from HVTN 705/HPX2008 (Imbokodo), one of two ongoing efficacy trials testing a prime-boost regimen developed by Janssen Vaccines & Prevention B.V., part of the Janssen Pharmaceutical Companies of Johnson & Johnson. Imbokodo has enrolled 2,637 cisgender women in Malawi, Mozambique, South Africa, Zambia, and Zimbabwe. The Data Safety Monitoring Board (DSMB) for the trial allowed the study to progress to completion, and the primary analysis of the results is planned for July 2021.

The second efficacy trial, Mosaico, is recruiting cisgender men and transgender people who have sex with cisgender men and/or transgender people at sites in Argentina, Brazil, Italy, Mexico, Peru, Poland, Spain, and the U.S. Mosaico is the first vaccine efficacy trial to specifically focus on people at risk for HIV infection who choose not to use PrEP (although the design allows for enrollees to change their mind during the trial without being withdrawn). As of May 2021, the trial had enrolled about half the target of 3,800 participants.

The vaccine regimens under evaluation comprise priming immunizations with adenovirus serotype 26 (Ad26) vectors encoding four different HIV "mosaic" antigens that combine elements from multiple virus clades, followed by a boost containing the HIV gp140 envelope protein in alum adjuvant. In Imbokodo, the gp140 boost is derived from a clade C virus, while Mosaico employs a bivalent clade C and mosaic gp140 protein construct. The trials represent a key test of whether vaccine strategies that induce non-neutralizing antibody responses can protect against HIV infection.

The Ad26 vector technology is the same technology used for Johnson & Johnson's single-dose COVID-19 vaccine, which has been given emergency authorization in Europe and the U.S. and is listed as safe and effective by the World Health Organization. An unexpected concern that has arisen in this context is the rare occurrence of <u>potentially</u> serious blood clotting disorders. This has not been reported in any of the trials of Ad26 vectors for HIV, and it's not yet clear if it relates to the Ad26 vector or a combined effect of the vector and the SARS-CoV-2 antigen contained in the COVID-19 vaccine. Certainly, data from the HIV trials will be closely evaluated for any evidence of this adverse event.

The majority of other vaccines in the pipeline are part of the expanding effort to design candidates capable of inducing bNAbs against HIV. The endeavor represents a monumental challenge because HIV has evolved a shape-shifting outer envelope that excels at repelling antibodies. Notably, this capacity stands in stark contrast to the susceptibility of SARS-CoV-2 to antibody neutralization, which explains why vaccines could be developed rapidly for COVID-19 but remain elusive for HIV.

Only over the past decade or so have technologies allowed researchers to identify rare bNAbs capable of strongly inhibiting a broad spectrum of HIV variants, a feat typically accomplished by an unusual antibody structure that allows for penetration of the virus's shield. Studies have found that the generation of these bNAbs usually results from multiple rounds of gene rearrangements in B cells, a process called <u>somatic hypermutation</u>. The goal now is to figure out how to design vaccine regimens capable of guiding B cells down the gene-shuffling pathway that would lead to the production of similar bNAbs.

In January 2021, <u>encouraging results</u> from a phase I trial of a vaccine strategy intended to take a first small step toward bNAb generation were presented at HIVR4P by William Schief (the webcast is no longer available, but see the table below for a link to a video of Schief's talk at the more recent HVTN Full Group Meeting). The study involved a specially designed protein named eOD-GT8 60mer administered with an adjuvant (AS01B). The aim was to increase the proportion of participants with detectable levels of B cells with a certain genetic signature known to represent a potential starting point for the pathway to bNAb production.

The trial succeeded in its aim: 35 of 36 (97%) of the recipients displayed the desired type of B cell after immunization, whereas only five had detectable levels before immunization. The researchers are now working to design what they call "shepherding" and "polishing"

vaccines, to guide the B cells down the remaining steps of the path to bNAb production. To facilitate this research, a collaboration has been initiated with the vaccine manufacturer Moderna. The hope is that the use of mRNA technology—which Moderna employed to create its efficacious COVID-19 vaccine—can accelerate the identification of promising shepherding and polishing vaccines.

Regrettably, the news of Schief's presentation became garbled on social media, leading to wildly erroneous claims that an effective HIV vaccine is imminent. In reality, the results are a potentially promising first step, but a long road remains.

The AMP trial results have implications for bNAb-related vaccine strategies as well as for passive immunization efforts. If bNAbs can one day be successfully induced by vaccination, it appears likely that the antibody titers will need to be high, and more than one vulnerable site on HIV will need to be targeted.

Outside of the realm of bNAbs, the past year witnessed a milestone with the launch of the first human trial of an HIV vaccine vector derived from cytomegalovirus (CMV). The research group of Louis Picker at Oregon Health Sciences University has been developing the candidate for more than a decade after obtaining impressive results in an SIV/macaque model. The vaccine has reliably protected about half of the animals exposed to a highly pathogenic SIV challenge, and the efficacy is associated with induction of unusual CD8 T cell responses. The potential for CMV to cause complications in certain settings has necessitated a cautious approach to human testing, but a phase la study is now underway at multiple U.S. sites.

Table: HIV Vaccines and Passive Immunization Pipeline 2020 (Active Clinical Trials)

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status
HIV VACCINES		'		
Ad26.Mos4.HIV, clade C Mosaic gp140 HIV/alum	Ad26 vectors encoding four mosaic Env, Gag, and Pol antigens (Ad26.Mos1. Gag-Pol, Ad26.Mos2.Gag- Pol, Ad26.Mos1.Env, Ad26. Mos2S.Env) Clade C and mosaic gp140 protein in alum adjuvant	NCT03964415 (HPX3002/ HVTN 706)	Janssen Vaccines & Prevention B.V.	Phase III
Full Group Meeting;	706 Imbokodo & Mosaico updates 2021 May 6 (<u>see video</u> starting at	1:00).		
	Sarnecki M, et al. <u>Safety and immu</u> Its (TRAVERSE): a randomised, par ct;7(10):e688–98.			
ALVAC-HIV (vCP2438) Bivalent clade C gp120/ MF59	Canarypox vector encoding HIV-1 clade C gp120, clade B gp41, Gag, and protease + protein boost comprising two clade C Env proteins (TV1.C gp120 and 1086.C gp120)	NCT02968849 (HVTN 702)	NIAID/HVTN/Bill & Melinda Gates Foundation/South African Medical Research Council/ Sanofi Pasteur/ GlaxoSmithKline	Phase IIb/III
N Engl J Med. 2021 I	6, Laher F, et al. <u>Vaccine efficacy of</u> Mar 25;384(12):1089–1100. e). Experimental HIV vaccine regim			dults.
DNA-HIV-PT123 AIDSVAX B/E DNA-HIV-PT123 MVA CMDR CN54gp140/MPLA-L Descovy or Truvada PrEP	DNA vaccines encoding clade C ZM96 Gag, clade C ZM96 Env, and CN54 Pol-Nef Bivalent HIV gp120 glycoprotein including clade B (MN) and clade E (A244) proteins Recombinant CN54gp140 Env protein from the clade C 97/CN/54 isolate in MPLA-L adjuvant MVA encoding envgp160, CM235 clade E and gag and pol CM240 clade A	NCT04066881	MRC/UVRI and LSHTM Uganda Research Unit	Phase IIb

a second randomisation to compare F/TAF with TDF/FTC PrEP. BMJ Global Health. 2019;4:A10.

\d26.Mos4.HIV lade C gp140/alum	Ad26 vectors encoding four mosaic Env, Gag, and Pol antigens (Ad26.Mos1. Gag-Pol, Ad26.Mos2.Gag-			
	Pol, Ad26.Mos1.Env, Ad26. Mos2S.Env) Clade C gp140 protein	NCT03060629 (HPX2008/HVTN 705)	Janssen Vaccines & Prevention B.V.	Phase IIb
	06 Imbokodo & Mosaico updates		eve analyses. Paper presente	ed at: HVTN
	021 May 6 (<u>see video</u> starting at IIH and partners launch HIV vacc		vember 30.	
HV DNA-rTV	DNA prime and replication- competent Tiantan vaccinia virus vector boost encoding Gag, Pol, and Env proteins from HIV-1 CN54	ChiCTR1900021422	Beijing Youan Hospital, Capital Medical University/Center for AIDS/STD Control and Prevention of China CDC/Beijing Institute of Biological Products Co., Ltd.	Phase IIa
	t al. The safety and immunogenic cal trial (Abstract P14-15 LB). Ret			npetent vaccir
ALVAC-HIV vCP1521 AIDSVAX B/E	Canarypox vector encoding HIV-1 CRF01_AE Env, clade B Gag, the protease-encoding portion of the Pol protein, and a synthetic polypeptide encompassing several known CD8+ T-cell epitopes from the Nef and Pol proteins AIDSVAX B/E recombinant protein vaccine containing gp120 from HIV-1 clades B and CRF01_AE	NCT01931358 NCT01435135	U.S. Army Medical Research and Development Command	Phase II
	aphan S, Chariyalertsak S, et al. L ii volunteers: a randomised contr			and ALVAC-HI
	, Luo K, et al. <u>HIV vaccine delaye</u> 2020 Jan 30;5(2):e131437.	d boosting increases Env va	riable region 2-specific antib	ody effector
 Easterhoff D, Pollara J, 	Luo K, et al. Boosting with AIDS readth and potency. J Virol. 2020		nstant region 1 and 2 antiboo	Jy-dependent

- Akapirat S, Karnasuta C, Vasan S, et al. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations. *PLoS One.* 2018 Apr 27;13(4):e0196397.
- Rerks-Ngarm S, Pitisuttithum P, Excler J-L, et al. Randomized, double-blind evaluation of late boost strategies for HIVuninfected vaccine recipients in the RV144 HIV vaccine efficacy trial. J Infect Dis. 2017 Apr 15;215(8):1255–63.
- Easterhoff D, Moody MA, Fera D, et al. Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathog. 2017 Feb 24;13(2):e1006182

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status
Tetravalent Ad26.Mos4. HIV Clade C gp140 Mosaic gp140	Ad26 vectors encoding two mosaic HIV-1 Envs and mosaic Gag and Pol + clade C HIV Env protein boost ± mosaic HIV Env protein boost	NCT02935686	Janssen Vaccines & Prevention B.V.	Phase I/IIa
safety and immunoge	omeaux CA, et al. <u>ASCENT: phase</u> nicity of two HIV-1 prophylactic stract TUAC0402LB). Presented	vaccine regimens comprising	Ad26.Mos4.HIV and either	clade C gp140
Ad26.Mos.HIV MVA Mosaic gp140 protein	Ad26 vectors encoding mosaic Env, Gag, and Pol MVA vectors encoding mosaic Env, Gag, and Pol + gp140 protein boost	NCT02315703	Janssen Vaccines & Prevention B.V./NIAID/ MHRP/ IAVI/Beth Israel Deaconess Medical Center	Phase I/IIa
	FL, Wegmann F, et al. <u>Evaluation</u> Iled, phase 1/2a clinical trial (APF 243.			
ChAdOx1.HTI MVA.HTI	Chimpanzee adenovirus and MVA vectors encoding HIVACAT T cell immunogen (HTI)	NCT04563377	University of Oxford	Phase I/IIa
VIR-1111	Prototype CMV vector	NCT04725877	Vir Biotechnology, Inc.	Phase la
 Vir Biotechnology (Proplatform, 2021 Januar) 	ess Release). <mark>Vir Biotechnology a</mark> ry 6.	nnounces initiation of phase 1	clinical trial to evaluate a	novel vaccine
EnvSeq-1 Envs adjuvanted with GLA-SE	Four individual EnvSeq-1 Env proteins (CH505TF, CH505w53, CH505w78, CH505 M5), GLA-SE adjuvant	NCT03220724 (HVTN 115)	NIAID	Phase I
	ertoire analysis and function of B at: HVTN Full Group Meeting; 2			art A and HVTN
p24CE1/2 DNA vaccine p55^gag DNA vaccine/ IL-12 DNA adjuvant	DNA vaccines encoding Gag p24 conserved elements and/ or Gag p55 + DNA vector encoding IL-12 adjuvant, delivered via intramuscular electroporation	NCT03181789 (HVTN 119)	NIAID	Phase I
expressing HIV M gro intramuscular electrop	I 119: a phase 1 clinical trial to ev up P24Gag conserved elements poration, in healthy, HIV-uninfect . May 6 (<u>see video</u> starting at 55:	(CE) and/or P55Gag, administ ted adult participants. Paper p	ered with IL-12 pDNA by	5

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status
Env/Gag DNA vaccine gp120 protein vaccine/ GLA-SE adjuvant PDPHV-201401)	Polyvalent DNA vaccine encoding Envs from HIV-1 clades A, B, C, and A/E and clade C Gag + polyvalent gp120 protein vaccine + GLA- SE adjuvant	NCT03409276 (HVTN 124)	NIAID	Phase I
(see video starting at	HVTN 124 – antibody & cellular. 36:33). ne (Press Release). HVTN 124 stu		1 0,	
2021 March 3.				
eOD-GT8 60mer/ AS01B/DPBS sucrose	Engineered priming immunogen designed to activate B-cell precursors as a step toward induction of bNAbs + AS01B adjuvant	NCT03547245	IAVI	Phase I
(see video starting at	eOD studies and what is next. Pap 0:47). First-in-human clinical trial confin			
2021 February 3. Jardine JG, Ota T, Sol 	k D, et al. Priming a broadly neutra 2015 Jul 10;349(6244):156–61.			
 2021 February 3. Jardine JG, Ota T, Solimmunogen. Science. BG505 SOSIP.664 	· · · · · · · · · · · · · · · · · · ·			
 2021 February 3. Jardine JG, Ota T, Solimmunogen. Science. BG505 SOSIP.664 gp140/ASO1B Dey AK, Cupo A, Ozo HIV-1 envelope glyco 	2015 Jul 10;349(6244):156-61. Native-like HIV-1 Env trimer	NCT03699241 NCT03699241 and analysis of BG505 SOSI hnol Bioeng. 2018 Apr;115(4)	HIV-1 using a germline-targ IAVI P.664, an extensively glyco :885–99.	Phase I sylated, trimeric
 2021 February 3. Jardine JG, Ota T, Solimmunogen. Science. 3G505 SOSIP.664 gp140/ASO1B Dey AK, Cupo A, Ozo HIV-1 envelope glyco 	2015 Jul 10;349(6244):156–61. Native-like HIV-1 Env trimer + AS01B adjuvant	NCT03699241 NCT03699241 and analysis of BG505 SOSI hnol Bioeng. 2018 Apr;115(4)	HIV-1 using a germline-targ IAVI P.664, an extensively glyco :885–99.	Phase I sylated, trimeric

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status			
ConM SOSIP EDC ConM SOSIP ConS UFO EDC ConS UFO Mosaic SOSIPs/MPLA	Prime-boost combinations of model immunogens based on HIV-1 envelope proteins with MPLA adjuvant	NCT03816137	Imperial College London	Phase I			
consensus sequence.	 Sliepen K, Han BW, Bontjer I, et al. Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. <i>Nat Commun.</i> 2019 May 29;10(1):2355. Markus S. EAVI2020 announces start of new HIV vaccine trial. Imperial College London. 2019 April 2. 						
Stable CH505TF gp120 Transient CH505TF gp120/GLA-SE	CH505TF gp120 produced from stably transfected cells or CH505TF gp120 produced from transiently transfected cells, with GLA-SE adjuvant	NCT03856996 (HVTN 123)	NIAID	Phase I			
	zy LK, Jiang C, et al. <u>Vaccine indu</u> 7 Dec 26;21(13):3681–90.	ction of heterologous tier 2 H	IV-1 neutralizing antibodie	s in animal			
HIV-1 gp41 MPER-656 liposome vaccine/alum	Priming immunogen designed to activate B-cell precursors as a step toward induction of bNAbs + alum adjuvant	NCT03934541 (HVTN 133)	NIAID	Phase I			
	ertoire analysis and function of E sented at: HVTN Full Group Mee			art A and			
HIV-1 BG505 SOSIP.664 gp140/TLR agonist/alum adjuvants	Native-like HIV-1 Env trimer + TLR 7/8 agonists ± alum adjuvants	NCT04177355 (HVTN 137)	NIAID	Phase I			
 McElrath J, et al. HVTN 137 - antibody & cellular. Paper presented at: HVTN Full Group Meeting; 2021 May 6 (see video starting at 1:14:13). 							
BG505 SOSIP.GT1.1 gp140 vaccine	Soluble, cleavage- competent, trimeric HIV-1 Env glycoprotein gp140 + adjuvant	NCT04224701	IAVI	Phase I			
 De Bree G, et al. Germline-targeting by native-like envelope trimers. SY07.05. Paper presented at: R4P; 2021 February 3. 							

PIPELINE REPORT 2021

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status
ChAdOx1.tHIVconsv1 MVA.tHIVconsv3 MVA. tHIVconsv4	Chimpanzee adenovirus and MVA vectors encoding conserved HIV antigens	NCT04553016	University of Oxford	Phase I
ChAdOx1.tHIVconsv1 MVA.tHIVconsv3 MVA. tHIVconsv4	Chimpanzee adenovirus and MVA vectors encoding conserved HIV antigens	NCT04586673	University of Oxford	Phase I
CH505TF gp120 GLA-SE adjuvant	HIV-1 CH505 transmitted/ founder gp120 + GLA-SE adjuvant	NCT04607408 (HVTN 135)	HVTN	Phase I
IHV01 A244/AHFG ALFQ adjuvant	IHV01 (FLSC) protein and A244/AHFG protein ± ALFQ adjuvant	NCT04658667	U.S. Army Medical Research and Development Command	Phase I
	son JS, et al. Safety and immuno d trial. Vaccine. 2021 Jun 4:S0264		D4 chimeric subunit vaccir	ne in a phase 1a
Env-C DNA HIV Env gp145 C.6980 protein Rehydragel/ALF43/ dmLT adjuvants	DNA vaccine encoding clade C Env ± HIV Env gp145 C.6980 protein ± adjuvant (Rehydragel, ALF43 or dmLT)	NCT04826094	NIAID	Phase I
CD40.HIVRI.Env DNA-HIV-PT123	Adjuvanted anti-CD40 mAb fused to Env gp140 HIV clade C ZM-96 ± DNA vaccines encoding clade C ZM96 Gag, clade C ZM96 Env, and CN54 Pol-Nef	NCT04842682	ANRS	Phase I
DREP-HIV-PT1 DNA-HIV-PT123 CN54gp140/MPLA-L	Clade C DNA-launched replicon (DREP) DNA vaccines encoding clade C ZM96 Gag, clade C ZM96 Env, and CN54 Pol-Nef recombinant CN54gp140 Env protein from the clade C 97/CN/54 isolate in MPLA-L adjuvant	<u>NCT04844775</u>	ANRS	Phase I

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status
PASSIVE IMMUNIZA	TION			
PGT121 VRC07-523LS PGDM1400	Monoclonal bNAbs administered intravenously	NCT03721510	ΙΑΥΙ	Phase I/IIa
3BNC117-LS-J 10-1074-LS-J	LA monoclonal bNAbs administered subcutaneously or intravenously	NCT04173819	ΙΑνι	Phase I/II
VRC01 VRC01LS VRC07-523LS	Monoclonal bNAbs administered subcutaneously to infants	NCT02256631	NIAID	Phase I
 McFarland EJ, Cur HIV-1 monoclonal 	l antibody VRC01I S in HIV-1-expose	ed newborn infants i infect i	JIS. ZUZ I IVIAV Z HAUZZA	
 HIV-1 monoclonal Cunningham CK, 0 HIV-exposed infar Cunningham CK, 1 immunodeficiency 	l antibody VRC01LS in HIV-1-expose Capparelli EV, McFarland EJ, et al. Sa nts (Abstract OA03.02). Paper preser McFarland EJ, Morrison RL, et al. Saf / virus (HIV)-1 monoclonal antibody \	fety and PK of potent anti-H nted at: R4P; 2021 January 2 ety, tolerability, and pharmad	IIV monoclonal AB VRC07- 27. cokinetics of the broadly ne	eutralizing humai
 HIV-1 monoclonal Cunningham CK, 0 HIV-exposed infar Cunningham CK, 1 immunodeficiency Aug 15;222(4):625 	Capparelli EV, McFarland EJ, et al. Sa nts (Abstract OA03.02). Paper preser McFarland EJ, Morrison RL, et al. Saf / virus (HIV)-1 monoclonal antibody 8–36.	fety and PK of potent anti-H nted at: R4P; 2021 January 2 ety, tolerability, and pharma VRC01 in HIV-exposed new	IIV monoclonal AB VRC07- 27. cokinetics of the broadly ne born infants. J Infect Dis. 20	eutralizing huma 120
 HIV-1 monoclonal Cunningham CK, G HIV-exposed infar Cunningham CK, M immunodeficiency Aug 15;222(4):623 VRC07-523LS Walsh S, Gay C, K and doses. Paper p Gaudinski MR, Ho 	Capparelli EV, McFarland EJ, et al. Sa nts (Abstract OA03.02). Paper preser McFarland EJ, Morrison RL, et al. Saf / virus (HIV)-1 monoclonal antibody `	fety and PK of potent anti-H nted at: R4P; 2021 January 2 ety, tolerability, and pharmac VRC01 in HIV-exposed new NCT03387150 HVTN 127/ HPTN 087 e pharmacokinetics of VRC07	IIV monoclonal AB VRC07- 27. cokinetics of the broadly ne born infants. <i>J Infect Dis</i> . 20 NIAID 7-523LS administered via d	eutralizing huma 220 Phase I ifferent routes nonoclonal
 HIV-1 monoclonal Cunningham CK, G HIV-exposed infar Cunningham CK, M immunodeficiency Aug 15;222(4):623 VRC07-523LS Walsh S, Gay C, K and doses. Paper p Gaudinski MR, Ho 	Capparelli EV, McFarland EJ, et al. Sa nts (Abstract OA03.02). Paper preser McFarland EJ, Morrison RL, et al. Saf y virus (HIV)-1 monoclonal antibody 8 8-36. LA monoclonal bNAb administered intravenously aruna S, et al. Safety and single-dose presented at: R4P; 2021 January 27. buser KV, Doria-Rose NA, et al. Safet	fety and PK of potent anti-H nted at: R4P; 2021 January 2 ety, tolerability, and pharmac VRC01 in HIV-exposed new NCT03387150 HVTN 127/ HPTN 087 e pharmacokinetics of VRC07	IIV monoclonal AB VRC07- 27. cokinetics of the broadly ne born infants. <i>J Infect Dis</i> . 20 NIAID 7-523LS administered via d	eutralizing huma 220 Phase I ifferent routes nonoclonal

Agent	Class/Type	Trial Registry Identifier(s)	Manufacturer/ Sponsor	Status			
PGT121 PGDM1400 10-1074 VRC07-523LS	Monoclonal bNAbs administered intravenously	NCT03928821 (HVTN 130/ HPTN 089)	NIAID	Phase I			
	. HVTN 130/HPTN 089 (triple co 1021 May 5 (<u>see video</u> starting at		ata. Paper presented at: H	VTN			
10E8.4/iMab	Bispecific monoclonal antibody administered subcutaneously or intravenously	NCT03875209	David Ho	Phase I			
 Huang Y, Yu J, Lanzi A 	 Padte NN, Yu J, Huang Y, Ho DD. Engineering multi-specific antibodies against HIV-1. Retrovirology. 2018 Aug 29;15(1):60. Huang Y, Yu J, Lanzi A, et al. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell. 2016 Jun 16;165(7):1621-31. 						
VRC07-523LS PGT121	Monoclonal bNAbs administered subcutaneously	PACTR201808919297244 (CAPRISA 012A)	Centre for the AIDS Programme of Research in South Africa	Phase I			
 Mahomed S, Garrett N, Capparelli E, et al. Assessing the safety and pharmacokinetics of the monoclonal antibodies, VRC07-523LS and PGT121 in HIV negative women in South Africa: study protocol for the CAPRISA 012A randomised controlled phase I trial. BMJ Open. 2019 Jul 3;9(7):e030283. 							
PGT121.414.LS VRC07-523LS	LA monoclonal bNAbs administered subcutaneously or intravenously	NCT04212091 (HVTN 136/ HPTN 092)	NIAID	Phase I			
VRC-HIVMAB0102-00- AB (CAP256V2LS)	LA monoclonal bNAb administered subcutaneously or intravenously	NCT04408963	NIAID	Phase I			

Shaded entries represent additions since the 2020 Pipeline Report.

ABBREVIATIONS

Ad4: adenovirus serotype 4 Ad26: adenovirus serotype 26 NAb: broadly neutralizing antibody **CMDR:** Chiang Mai double recombinant **CROI:** Conference on Retroviruses and Opportunistic Infections **DPBS**: Dulbecco's phosphate-buffered saline GLA-AF: glucopyranosyl lipid adjuvant (aqueous formulation) GLA-SE: glucopyranosyl lipid adjuvant formulated in a stable emulsion HVTN: HIV Vaccine Trials Network **IAVI:** International AIDS Vaccine Initiative IL: interleukin LA: long-acting mAb: monoclonal antibody MHRP: U.S. Military HIV Research Program MPER: membrane-proximal external region MPLA: monophosphoryl lipid A MVA: modified vaccinia Ankara strain NIAID: U.S. National Institute of Allergy and Infectious Diseases NIH: U.S. National Institutes of Health PrEP: pre-exposure prophylaxis R4P: HIV Research for Prevention Conference STD: sexually transmitted disease TLR: toll-like receptor UFO: uncleaved pre-fusion optimized UVRI: Uganda Virus Research Institute VLP: virus-like particle VRC: The Dale and Betty Bumpers Vaccine Research Center