Antibody Mediated Prevention (AMP) ATIS & Analytical Treatment Interruption Studies in Africa

Shelly Karuna, MD, MPH •

18 February 2023

Summary for Community

- What is the main issue or key question(s) your work addresses?
 - **Can ATIs in Africa be conducted safely?**
 - > Can ATIs help us address key questions in HIV prevention, treatment & cure?
- What was the key finding or "take home message"?
 - > ATIs can be conducted safely and very well in Africa.
 - > African women are a unique population with & from whom we can learn a great deal through ATIs.
- How is this important for HIV cure research?
 - > AMP ATI participants can demonstrate how ATIs can be successfully conducted throughout the world.
 - ➤ AMP ATI participants can help us learn about immune responses and virus characteristics that may be associated with post-treatment control. This knowledge may help us identify potential cure strategies more efficiently.

- Background: ATIs in Africa
- The AMP studies
- Post-AMP ATI in sub-Saharan Africa
 - Development
 - Screening Outcomes
 - Viral Rebound & Control

Special Thanks

Fatima Laher

Catherine Orrell

Joseph Makhema

Glenda Gray

Sufia Dadabhai

Mina Hosseinipour

Nigel Garrett

Ian Sanne

Rachel Kawalazira

BACKGROUND

HIV VACCINE

Analytical Treatment Interruption (ATI)

Dotted lines indicate <u>potential</u> interventions or outcomes

- A carefully monitored ART pause by people living with HIV
- Historically used as part of therapy, in hopes of minimizing ARV toxicities & addressing multi-resistant virus & treatment failure
- Now used in research to evaluate options for HIV viral suppression, including for sustained, ART-free virologic remission (SVR); safe & well-tolerated "design of choice" in HIV cure research

Sample Treatment Interruptions in Africa

- Trivacan, ANRS 1269, CD4-guided STI* in west Africa
- SMART CD4-guided STI* The SMART Study Team NEJM, 2006
- Nested STI in DART in Uganda & Zimbabwe
- RCT of Short-Cycle Intermittent vs Continuous ART in Uganda
 Reynolds SJ et al, PLoS ONE 2010
- RCT of STI* vs. Continuous ART for PI-based ART in RSA
- SPARTAC Short-course ART
 The SPARTAC Trial Investigators, NEJM 2013
- Optimizing Pediatric HIV-1 Treatment Study in Kenyan infants

*STI: Structured Treatment Interruption

THE SPARTAC STUDY

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 17, 2013

VOL. 368 NO. 3

Short-Course Antiretroviral Therapy in Primary HIV Infection

The SPARTAC Trial Investigators*

Does short-term ART during primary HIV infection lengthen the time to CD4+ < 350 or requirement of long-term ART?

HR, 48-wk ART vs. Standard Care = 0.63 (0.45-0.90, p=0.01)

THE SPARTAC SUB-STUDY: Virologic Control After Early ART Initiaion in African Women

- SPARTAC ppts from Uganda & South Africa were included in the analysis; all female, all non-B (most C) sub-types
- Evaluated: CD4+ T-cell count; Viral Load; cell-associated HIV RNA & DNA; T-cell activation & exhaustion
- 5/22 (23%) African ppts in the 48week "early ART" pre-ATI arm maintained VL< 400 copies/mL over a median of 188 weeks post-ATI

THE ANTIBODY-MEDIATED PREVENTION (AMP) STUDIES

HVTN 703/HPTN 081 (sub-Saharan Africa)

8

HVTN 704/HPTN 085 (The Americas & Switzerland)

Neutralizing Antibodies

Thanks to Lisa Donohue for these images.

The AMP Studies

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition

L. Corey, P.B. Gilbert, M. Juraska, D.C. Montefiori, L. Morris, S.T. Karuna, S. Edupuganti, N.M. Mgodi, A.C. deCamp, E. Rudnicki, Y. Huang, P. Gonzales, R. Cabello, C. Orrell, J.R. Lama, F. Laher, E.M. Lazarus, J. Sanchez, I. Frank, J. Hinojosa, M.E. Sobieszczyk, K.E. Marshall, P.G. Mukwekwerere, J. Makhema, L.R. Baden, J.I. Mullins, C. Williamson, J. Hural, M.J. McElrath, C. Bentley, S. Takuva, M.M. Gomez Lorenzo, D.N. Burns, N. Espy, A.K. Randhawa, N. Kochar, E. Piwowar-Manning, D.J. Donnell, N. Sista, P. Andrew, J.G. Kublin, G. Gray, J.E. Ledgerwood, J.R. Mascola, and M.S. Cohen, for the HVTN 704/HPTN 085 and HVTN 703/HPTN 081 Study Teams*

N ENGL J MED 384;11 NEJM.ORG MARCH 18, 2021

Trial	Cohort	VRC 01 10 mg/kg	VRC 01 30 mg/kg	Placebo	Total
HVTN 704/ HPTN 085	Americas & Europe: US, Peru, Brazil, Switzerland MSM & TG people (Clade B)	900	900	900	2,700
HVTN 703/ HPTN 081	Sub-Saharan Africa: Botswana, Kenya, Malawi, Mozambique, South Africa, Tanzania, Zimbabwe Heterosexual women (Clades A, C, D, & CRFs)	~633	~633	~634	1,900
	Total	~1,533	~1,533	~1,534	4,600

The AMP Trials: Outcomes

PROOF OF CONCEPT

~75% protection against bnAb-sensitive viruses

BENCHMARK

Informs our understanding of the antibody breadth & potency needed for protection

ASSAY VALIDATION

• TZM-bl pseudovirus assay provided a sharp cutoff for neutralization-based prevention efficacy assessment

MECHANISTIC CORRELATE OF PROTECTION

 protection achieved with a neutralization titer of ~1:250, which also corresponds to NHP/SHIV model

HVTN 704/HPTN 085: PE 26.6% [95% CI -11.7 to 51.8] HVTN 703/HPTN 081: PE 8.8% [95% CI -45.1 to 42.6]

PE= Prevention Efficacy

Corey et al., NEJM, 2021

AMP Participants are Unique

- Early ART initiation due to frequent HIV diagnostics and CRSfacilitated entry into HIV care
- Broadly neutralizing antibodies present at the time of HIV acquisition

Each of these factors may have (1) favorable effects on the participant's immune system, or (2) unfavorable effects on the participant's virus, or both, to set the stage for possible later ART-free durable virologic control.

POST-AMP ATI IN AFRICA

HVTN 805/HPTN 093/A5393

HIV VACCINE

Analytical Treatment Interruption (ATI)

Immune Complex Modulation of Host Immune Responses

- A. OPSONIZATION of virus & of infected cells
- B. Complement-mediated VIROLYSIS
- C. FcγR- and complement-mediated PHAGOCYTOSIS
- D. Complement-dependent CYTOTOXICITY
- E. Antibody-dependent cellular PHAGOCYTOSIS (ADCP)
- F. Antibody-dependent cellular CYTOTOXICITY (ADCC)
- G. Antigen recognition, uptake & presentation by antigen-presenting cells (APCs) like dendritic cells (DCs)

Lambour J et al, Emerging Microbes & Infections 2016 Dhodapkar KM et al, PNAS 2005

From the Beginning: Scientific & Stakeholder Engagement

AMP ATI concept development begins

- March 2019: Johannesburg & Boston
 - Sub-Saharan Africa, North & South America
 - Investigators, Ethicists, Regulatory, Public Health & Community representatives

Photos thanks to Maija Anderson

Recent Consensus ATI Design Recommendations

COMMUNITY RECOMMENDATIONS FOR CLINICAL RESEARCH INVOLVING ANTIRETROVIRAL TREATMENT INTERRUPTIONS IN ADULTS NOVEMBER 2018

Review

Recommendations for analytical antiretroviral treatment interruptions in HIV research trials—report of a consensus meeting

Boris Julg, Lynda Dee, Jintanat Ananworanich, Dan H Barouch, Katharine Bar, Marina Caskey, Donn J Colby, Liza Dawson, Krista L Dong, Karine Dubé, Joseph Eron, John Frater, Rajesh T Gandhi, Romas Geleziunas, Philip Goulder, George J Hanna, Richard Jefferys, Rowena Johnston, Daniel Kuritzkes, Jonathan Z Li, Udom Likhitwonnawut, Jan van Lunzen, Javier Martinez-Picado, Veronica Miller, Luis J Montaner, Douglas F Nixon, David Palm, Giuseppe Pantaleo, Holly Peay, Deborah Persaud, Jessica Salzwedel, Karl Salzwedel, Timothy Schacker, Virginia Sheikh, Ole S. Søgaard, Serena Spudich, Kathryn Stephenson, Jetemy Sugarman, Jeff Taylor, Pablo Tebas, Caroline T Tiemessen, Randall Tressler, Carol D Weiss, Lu Zheng, Merlin L Robb, Nelson L Michael, John W Mellors, Steven G Deeks. Bruce D Walker

Analytical antiretroviral treatment interruption (ATI) is an important feature of HIV research, seeking to achieve sustained viral suppression in the absence of antiretroviral therapy (ART) when the goal is to measure effects of novel therapeutic interventions on time to viral load rebound or altered viral setpoint. Trials with ATIs also intend to determine host, virological, and immunological markers that are predictive of sustained viral control off ART. Although ATI is increasingly incorporated into proof-of-concept trials, no consensus has been reached on strategies to maximise its utility and minimise its risks. In addition, differences in ATI trial designs hinder the ability to compare efficacy and safety of interventions across trials. Therefore, we held a meeting of stakeholders from many interest groups, including scientists, clinicians, ethicists, social scientists, regulators, people living with HIV, and advocacy groups, to discuss the main challenges concerning ATI studies and to formulate recommendations with an emphasis on strategies for risk mitigation and monitoring, ART resumption criteria, and ethical considerations. In this Review, we present the major points of discussion and consensus views achieved with the goal of informing the conduct of ATIs to maximise the knowledge gained and minimise the risk to participants in clinical HIV research.

Lancet HIV 2019

Published Online March 15, 2019 http://dx.doi.org/10.1016/ 52352-3018(19)30052-9

Panel: Key recommendations

Inclusion criteria

- Stable CD4 counts ≥500 cells per µL*
- HIV RNA undetectable on stable ART1
- · Otherwise healthy individuals without major comorbidities

- · Active or chronic hepatitis B virus infection, with detectable hepatitis B surface antigen, hepatitis B virus DNA, or both
- · Active hepatitis C virus infection, with detectable virus RNA
- · Active Mycobacterium tuberculous infection‡
- · History of systemic cancers, such as Kaposi's sarcoma and lymphoma, or other virus-associated malignancies®
- History of HIV-associated dementia or progressive multifocal leukoencephalopathy
- Resistance to two or more classes of antiretroviral drugs¶
- History of cardiovascular event or at high risk of an event (eq., atherosclerotic cardiovascular disease score >15%)
- History of AIDS-defining illness according to Centers for Disease Control and Prevention criteria
- History of CD4 nadir <200 cells per µL during chronic stages of infection
- Women who are pregnant or breastfeeding
- Advanced non-alcoholic fatty liver and advanced nonalcoholic steatohepatitis, if evidence for substantial fibrosis (fibrosis score ≥F2) or evidence of cirrhosis
- · HIV-related kidney disease or moderate-to-severe decrease in estimated glomerular filtration rate (<45-60 mL/min/1-73 m2)
- · Children younger than 2 years of age when the ATI is planned

- · HIV RNA monitoring weekly for 12 weeks, then every other week
- · CD4 count monitoring every two weeks
- · Monitoring of clinical symptoms, in particular in people who started ART during the hyperacute HIV phase
- · Monitoring of participants' psychosocial experiences

- . If requested by the participant or their HIV health-care provider
- If participant becomes pregnant
- . If ART is deemed medically necessary for non-HIV related causes
- Symptomatic HIV disease
- Confirmed absolute CD4 value <350 cells per µL or CD4% <15%**
- HIV RNA ≥1000 copies per mL for 4 weeks††
- Absolute HIV RNA >100 000 copies per mL††

Reducing risk of HIV transmission to sexual partners

· Offer pre-exposure prophylaxis and HIV testing referral information that trial

participants can provide to their sexual partners Additional or more stringent criteria might be required based on known toxicities of the study drug(s) or expected risks of the

study intervention(s). Inclusion and exclusion criteria, monitoring, and antiretroviral therapy (ART) restart criteria might diffe in children depending on age. ART-antiretroviral therapy. *Baseline CD4 counts of x350 cells per µL might be considered †Based on FDA-approved HIV RNA quantification assay ‡ Latent tuberculosis infection discussed in the text. 5Other malignancies discussed in the text. ¶Defined as single key mutations or an accumulation of minor mutations that result is tance to entire respective drug classes. ||Symptoms include, but are not limited to, unintentional weight loss (>5-10% of the pre-ATI bodyweight), otherwise unexplained persistent fever (>100-q°F/38°C), persistent night sweats persistent diarrhoea, oral candidiasis and generalised lymphadenopathy. **Largely dependent on the CD4 entry criteria ††12-16 weeks of uncontrolled viraemia, with HIV RNA of more than 100 000 copies per mil; it might be acceptable in studies in which a stable viral set point is a primary endpoint

AMP ATI Eligibility

SELECT* INCLUSION CRITERIA

Former AMP participant

Initiated ART within ~ 6 months of HIV dx

CD4⁺ T cell count > 450 cells per mL

VL suppressed on ART for ≥ 1 year

If on an NNRTI-based regimen, willing to switch to protease or integrase inhibitor-based regimen ≥4 weeks pre-ATI

Willing to be on effective contraception & use barrier protection throughout trial

SELECT* EXCLUSION CRITERIA

Documented multi-class ART resistance that poses a risk of virologic failure if additional mutations develop during the study

Reduced renal function

HepBsAg (+) or (+) HCV RNA

Elevated liver function tests

Tuberculosis, untreated

Pregnant or breastfeeding

*Not an exhaustive list

AMP ATI Study Design

	PRE-ENTRY		SCHEDULE 1		SCHEDULE 2			SCHEDULE 3				
	SCREEN	PRE- DISCONTINUE ART	ATI WEEKS 0-8	ATI WEEKS 10-24	ATI WEEKS 28-52 ¹	ATI + Viremia WEEKS 0-8	ATI + Viremia WEEKS 10-36	ATI + Viremia WEEKS 40-52 ²	PRE- REINITIATE ART	FOLLOW UP ON ART WEEKS 0-12	FOLLOW UP ON ART WEEKS 12-28	ON ART
Plasma HIV RNA	\checkmark	\checkmark	WEEKLY	Q2 WEEKS	Q4 WEEKS	WEEKLY	Q2 WEEKS ³	Q4 WEEKS	\checkmark	Q2 WEEKS	Q4 WEEKS	Q12 WEEKS
CD4+ & CD8+ T cell counts	\checkmark	√	Q2 WEEKS	Q4 WEEKS	Q8 WEEKS	Q2 WEEKS	Q4 WEEKS ⁴	Q8 WEEKS	√	Q4 WEEKS	Q8 WEEKS	Q12 WEEKS
Hematology & Chemistries	√	√	Q4 W	EEKS	Q8 WEEKS	Q4 W	EEKS	Q8 WEEKS	-	Q4 WEEKS	Q12 WEEKS	Q12 WEEKS

¹ QUARTERLY FOLLOW-UP VISITS MAY CONTINUE BEYOND WEEK 52 FOR PARTICIPANTS WHO DO NOT MEET CRITERIA FOR TRANSITION TO SCHEDULE 2.

Thanks to Lisa Donohue

HIV VACCINE

² QUARTERLY FOLLOW-UP VISITS MAY CONTINUE BEYOND WEEK 52 FOR PARTICIPANTS WHO DO NOT MEET CRITERIA FOR ART RE-INITIATION

³ OR WEEKLY FOR WEEKS 10-24, IF VL≥200 copies/mL

⁴ OR Q2 WEEKS FOR WEEKS 10-24 IF VL≥200 copies/mL

ART Re-initiation Criteria

- Viral load ≥ 1,000 copies/mL for ≥ 4 consecutive weeks, confirmed on a second sample & not declining by 0.5 log from the previous week; OR
- CD4⁺ T cell count < 350 cells/mm³, confirmed on a second sample; OR
- Any HIV-related syndrome (eg, acute retroviral syndrome, an opportunistic infection); OR
- Participant or provider wish to re-initiate ART.

Additional Select Study-Specific Design Considerations

Robust informed consent process

- Informed Consent Video with Informed Consent Form & EC review
- Assessment of Understanding
- Facilitated decision-making process with an initial (& periodically repeated) decision aid & assessments: does your decision align

with your values?

Additional Select Study-Specific Design Considerations

- Robust informed consent process
 - Informed Consent Video with Informed Consent Form & EC review
 - Assessment of Understanding
 - Facilitated decision-making process with an initial (& periodically repeated) decision aid & assessments: does your decision align with your values?

"[participants] have shown a consistent & retained understanding over time"

"it's not just one session of screening or counseling, you need to give people time to talk with family or a friend"

"this is another level of respecting a participant's decision"

- STI testing q3 months and as clinically indicated
- Weekly counseling on HIV transmission risk reduction and facilitated HIV testing and PrEP for sexual partners.

SSA AMP ATI Pre-Screening to Enrollment

Thanks to Doug Grove

SSA AMP ATI Pre-Screening & Screening Outcomes

AMP ATI Study Design

- 1 QUARTERLY FOLLOW-UP VISITS MAY CONTINUE BEYOND WEEK 52 FOR PARTICIPANTS WHO DO NOT MEET CRITERIA FOR TRANSITION TO SCHEDULE 2.
- ² QUARTERLY FOLLOW-UP VISITS MAY CONTINUE BEYOND WEEK 52 FOR PARTICIPANTS WHO DO NOT MEET CRITERIA FOR ART RE-INITIATION
- ³ OR WEEKLY FOR WEEKS 10-24, IF VL≥200 copies/mL
- 4 OR Q2 WEEKS FOR WEEKS 10-24 IF VL≥200 copies/mL

Thanks to Lisa Donohue

Viral Load & CD4+ T-cell Count Dynamics: Many Variables

Summary

& in Peru*

ATIs can be conducted safely & well in Africa

*AMP ATI in Peru began in August 2022 with n=17 ppts so far

- Authentic early-&-often stakeholder engagement is a key to ATI & HIV cure research success, irrespective of geography
- Among African women, consider *relationships*, pregnancy, autonomy & the role of a placebo group
- Robust informed consent, decision aids, psychological assessments and non-punitive ARV & STI testing can support success

AMP ATI Studies Protocol Team Acknowledgements

Chairs

- Shelly Karuna
- Katharine Bar

PTLs/CMMs

- Phil Andrew
- Shelly Karuna
- Azwi Takalani
- Simba Takuva
- Manuel Villaran

Statisticians

Allan DeCamp

Medical Officers

- Randall Tressler
- Lydia Soto-Torres

Laboratory Leads

- John Hural
- Estelle Piwowar-Manning

CAB Members

- Mark Hubbard
- Derrick Mapp
- Angy Peter
- · Maximina Jokonya

CERs

- DaShawn Usher
- Hugo Sanchez
- Charles Chasakara
- Ivy Kaunda

CEU Representative

Gail Broder

Clinic Coordinators

- Debora Dunbar
- Milagros Sabaduche
- Nitesha Jeenarain

Community Program Associate

Jonathan Lucas

CSS

Maija Anderson

Consulting Investigators

- Tae-Wook Chun
- Michael Sneller
- Lucio Gama
- Jorge Gallardo Cartagena
- Catherine Orrell
- Nyaradzo Mgodi

CTM/CRM

- Carissa Karg
- Phil Andrew

Data Management

- Alison Ayers
- April Randhawa

Ethics Representative

- Stuart Rennie
- Ames Dhai

Lab Representatives

- Lisa Sanders
- Jen Hanke
- Vanessa Cummings

PDMs

- Smitha Sripathy
- Meg Trahey

Pharmacist

Justine Beck

Pharmacologist

Julie Dumond

Regional Medical Liaison

- Azwi Takalani
- Robert De La Grecca

Regulatory Affairs

Megan Brandon

Social Behavioral Scientist

Michele Andrasik

Statistics

- Pei-Chun Yu
- Doug Grove
- Erika Rudnicki

AMP ATI Site Acknowledgements

Thank you to all the site investigators, clinic coordinators, community engagement teams, and pharmacists.

HVTN 805/HPTN 093/A5393 Sites

- Blantyre
- Gaborone
- Harare Seke South
- Harare Spilhaus
- Johannesburg Ward 21
- Lilongwe
- Rustenburg
- Soweto Bara

HVTN 804/HPTN 095/A5390 Sites

- Iquitos
- Lima Barranco
- Lima San Marcos
- Lima San Miguel
- Lima Via Libre
- Rio de Janeiro Manguinhos

